
Leipzig University Augustusplatz 10
Faculty of Mathematics and Computer Science 04103 Leipzig
Computer Science Institute Germany

Proceedings of the International Workshop on
Reactive Concepts in Knowledge Representation

2014

Technical Report 1 (2014)

Stefan Ellmauthaler
Computer Science Institute

Leipzig University
Germany

Jörg Pührer
Computer Science Institute

Leipzig University
Germany

ISSN 1430-3701

Preface

We are pleased to present the proceedings of the International Workshop on Reactive Concepts in
Knowledge Representation (ReactKnow 2014), which took place on August 19th, 2014 in Prague,
co-located with the 21st European Conference on Artificial Intelligence (ECAI 2014).

In the field of Artificial Intelligence (AI), the subdomain of Knowledge Representation (KR)
has the aim to represent, integrate, and exchange knowledge in order to provide reasoning about
given and potentially incomplete information. While most traditional KR formalisms are con-
cerned with knowledge bases that do not change over time or are only subject to occasional
revisions, the advent of smart devices and recent advances in Internet technology - guided by the
visions of a Semantic Web and the Internet of Things - has increased the interest in online applic-
ations that are able to directly react on a possibly infinite stream of external information such as
sensor or network data. While current approaches for handling continuous stream data focus on
rapid data processing, they lack complex reasoning capacities. Recent endeavours try to combine
KR formalisms such as answer-set programming, Semantic Web ontologies, and multi-context
systems with stream processing for providing knowledge-intense stream reasoning capabilities of
various application areas such as urban computing, ambient assisted living, robotics, or dynamic
scheduling. The goal of making sophisticated KR techniques accessible in the reactive setting
poses many scientific challenges how to deal with emerging as well as expiring data in a seamless
way.

ReactKnow is intended as an international forum for researchers in the AI and KR community
to discuss and present advances in theory, formalisms, and applications to get closer to the vision
of an artificial intelligence system which may react according to changing knowledge.

Eight papers have been accepted for presentation at ReactKnow 2014 and constitute the
technical contributions to this proceedings. They cover a wide range of research topics including
reasoning about action, multi-context systems, reasoning over big data, and complexity aspects.
Many of these contributions introduce novel formalisms or refine existing ones. Each submission
received three reviews in a blind review process.

We would like to thank the invited speaker Michael Fink for his opening talk titled “On
Reactive Concepts for Multi-Context Systems and HEX-Programs”. An abstract of the talk is
contained in this volume.

We would like to take this opportunity to thank all the authors of submissions for ReactKnow
2014 for sending their papers and the authors of accepted papers for revising their contributions
to be included in these proceedings. Moreover, we thank all PC members, reviewers, speakers,
and participants for making this workshop happen. We are grateful for the help of João Leite in
the review process and the support of the ECAI workshop chairs, Marina de Vos and Karl Tuyls.

August 2014 Stefan Ellmauthaler
Jörg Pührer

(Organisers ReactKnow 2014)

3

Programme Chairs

Stefan Ellmauthaler Leipzig University, Germany
Jörg Pührer Leipzig University, Germany

Programme Committee

Gerhard Brewka Leipzig University, Germany
Michael Fink Vienna University of Technology, Austria
Robert Kowalski Imperial College London, UK
Joao Leite CENTRIA, Universidade Nova de Lisboa, Portugal
Alessandra Mileo DERI, Ireland
Philipp Obermeier Potsdam University, Germany
Axel Polleres Vienna University of Economics and Business, Austria
Sebastian Rudolph Dresden Univeristy of Technology, Germany
Torsten Schaub Potsdam University, Germany
Son Tran NMSU, USA

Additional Reviewers

Minh Dao-Tran Vienna University of Technology, Austria
Daria Stepanova Vienna University of Technology, Austria

4

Table of Contents

Invited Talk

On Reactive Concepts for Multi-Context Systems and HEX-Programs . 7

Michael Fink

Papers

Reactive Reasoning with the Event Calculus . 9

Alexander Artikis, Marek Sergot and Georgios Paliouras

Towards Ideal Semantics for Analyzing Stream Reasoning . 17

Harald Beck, Minh Dao-Tran, Thomas Eiter and Michael Fink

Multi-Context Systems for Reactive Reasoning in Dynamic Environments. 23

Gerhard Brewka, Stefan Ellmauthaler and Jörg Pührer

Asynchronous Multi-Context Systems . 31

Stefan Ellmauthaler and Jörg Pührer

On Minimal Change in Evolving Multi-Context Systems (Preliminary Report) 39

Ricardo Gonçalves, Matthias Knorr and Joao Leite

Towards Efficient Evolving Multi-Context Systems (Preliminary Report) 47

Ricardo Gonçalves, Matthias Knorr and Joao Leite

Towards a Simulation-Based Programming Paradigm for AI applications 55

Jörg Pührer

Towards Large-scale Inconsistency Measurement . 63

Matthias Thimm

5

Invited Talk:
On Reactive Concepts for Multi-Context Systems and HEX-
Programs

Michael Fink

In this talk we will first briefly review the Multi-Context Systems (MCS) framework as proposed
by Brewka and Eiter. It provides a declarative, rule-based approach to model the flow of in-
formation among different reasoning components, called contexts, by means of so-called bridge
rules. More specifically, we will then consider a generalization of MCS called managed MCS
(mMCS). While bridge rules were originally designed to add information to a context on the
basis of beliefs held at other contexts, in an mMCS bridge rules can model arbitrary operations
on a context knowledge base. Our motivation to review mMCS stems form the fact that this
enhanced capability has recently triggered follow-up research that takes mMCS as the basis for
modeling dynamic and reactive reasoning systems. In the second part of the talk we will turn
to implementation aspects and sketch how the semantics (i.e., equilibria) can be computed for
a class of mMCS (admitting centralized control) using HEX-programs. The letter essentially
extend logic programs under the answer-set semantics with external atoms for incorporating
external sources of information and computation. However, HEX-programs per se turn out to
be inapt as a programming paradigm for modeling stateful computation with declarative con-
trol, as, e.g., required to implement dynamic, reactive extensions. For this purpose, and as a
promising programming language for prototyping dynamic and reactive reasoning systems, we
propose ACTHEX-programs that allow for action atoms in the head of rules which can actually
effect changes to an external environment.

7

Reactive Reasoning with the Event Calculus
Alexander Artikis1 and Marek Sergot2 and Georgios Paliouras3

Abstract. Systems for symbolic event recognition accept as input a
stream of time-stamped events from sensors and other computational
devices, and seek to identify high-level composite events, collections
of events that satisfy some pattern. RTEC is an Event Calculus dialect
with novel implementation and ‘windowing’ techniques that allow
for efficient event recognition, scalable to large data streams. RTEC
can deal with applications where event data arrive with a (variable)
delay from, and are revised by, the underlying sources. RTEC can up-
date already recognised events and recognise new events when data
arrive with a delay or following data revision. Our evaluation shows
that RTEC can support real-time event recognition and is capable of
meeting the performance requirements identified in a recent survey
of event processing use cases. 4

1 Introduction

Systems for symbolic event recognition (‘event pattern matching’)
accept as input a stream of time-stamped simple, derived events
(SDE)s. A SDE (‘low-level event’) is the result of applying a com-
putational derivation process to some other event, such as an event
coming from a sensor [21]. Using SDEs as input, event recognition
systems identify composite events (CE)s of interest—collections of
events that satisfy some pattern. The ‘definition’ of a CE (‘high-level
event’) imposes temporal and, possibly, atemporal constraints on its
subevents, i.e. SDEs or other CEs. Consider e.g. the recognition of
attacks on computer network nodes given the TCP/IP messages.

Numerous recognition systems have been proposed in the litera-
ture [10]. Recognition systems with a logic-based representation of
CE definitions, in particular, have recently been attracting attention
[4]. They exhibit a formal, declarative semantics, in contrast to other
types of recognition system that usually rely on an informal and/or
procedural semantics. However, non-logic-based CE recognition sys-
tems have proven to be, overall, more efficient than logic-based ones.
To address this issue, we present an efficient dialect of the Event Cal-
culus [18], called ‘Event Calculus for Run-Time reasoning’ (RTEC).
The Event Calculus is a logic programming formalism for repre-
senting and reasoning about events and their effects. RTEC includes
novel implementation techniques for efficient CE recognition, scal-
able to large SDE and CE volumes. A set of interval manipulation
constructs simplify CE definitions and improve reasoning efficiency.
A simple indexing mechanism makes RTEC robust to SDEs that are
irrelevant to the CEs we want to recognise and so RTEC can operate
without SDE filtering modules. Finally, a ‘windowing’ mechanism
supports real-time CE recognition. One main motivation for RTEC

1 University of Piraeus, Greece & NCSR Demokritos, Greece, email:
a.artikis@unipi.gr

2 Imperial College London, UK, email: m.sergot@imperial.ac.uk
3 NCSR Demokritos, Greece, email: paliourg@iit.demokritos.gr
4 A form of this paper has been submitted to IEEE TKDE.

is that it should remain efficient and scalable in applications where
SDEs arrive with a (variable) delay from, or are revised by, the un-
derlying SDE detection system: RTEC can update the already recog-
nised CEs, and recognise new CEs, when SDEs arrive with a delay
or following revision. The code of RTEC is available at <http:
//users.iit.demokritos.gr/˜a.artikis/EC.html>.

We evaluate RTEC on public space surveillance from video con-
tent. In this application, the SDEs are the ‘short-term activities’ de-
tected on video frames—e.g. a person walking, running or being in-
active. The aim then is to recognise ‘long-term activities’, i.e. short-
term activity combinations, such as when a person leaves an object
unattended, when two people are moving together, when they are
having a meeting or fighting. The CE definitions are quite complex,
allowing for a realistic evaluation of the efficiency of RTEC. This is
in contrast to the majority of related approaches where rather simple
CE definitions are used for empirical analysis. Our evaluation shows
that RTEC supports real-time CE recognition and is capable of meet-
ing the performance requirements of most of today’s applications as
estimated by a recent survey of event processing use cases [5].

The remainder of the paper is structured as follows. Sections 2
and 3 present the expressivity of RTEC and the way it performs rea-
soning. The experimental evaluation is given in Section 4. Section 5
summarises the presented work, puts the work in context, and out-
lines directions for further research.

2 Event Calculus

Our system for CE recognition is based on an Event Calculus dialect.
The Event Calculus [18] is a logic programming formalism for rep-
resenting and reasoning about events and their effects. For the dialect
introduced here, called RTEC, the time model is linear and includes
integer time-points. Variables start with an upper-case letter, while
predicates and constants start with a lower-case letter. Where F is a
fluent—a property that is allowed to have different values at different
points in time—the term F =V denotes that fluent F has value V .
Boolean fluents are a special case in which the possible values are
true and false. holdsAt(F =V, T) represents that fluent F has value
V at a particular time-point T . holdsFor(F =V, I) represents that I
is the list of the maximal intervals for which F =V holds continu-
ously. holdsAt and holdsFor are defined in such a way that, for any
fluent F , holdsAt(F =V, T) if and only if T belongs to one of the
maximal intervals of I for which holdsFor(F =V, I).

An event description in RTEC includes rules that define the event
instances with the use of the happensAt predicate, the effects of
events with the use of the initiatedAt and terminatedAt predicates, and
the values of the fluents with the use of the holdsAt and holdsFor
predicates, as well as other, possibly atemporal, constraints. Table 1
summarises the RTEC predicates available to the event description
developer. The last three items in the table are interval manipulation

9

predicates specific to RTEC.

Table 1: Main predicates of RTEC.

Predicate Meaning

happensAt(E, T) Event E occurs at time T

holdsAt(F =V, T) The value of fluent F is V at time T

holdsFor(F =V, I) I is the list of the maximal intervals
for which F =V holds continuously

initiatedAt(F =V, T) At time T a period of time for which
F =V is initiated

terminatedAt(F =V, T) At time T a period of time for which
F =V is terminated

relative I is the list of maximal intervals produced
complement by the relative complement of the list
all (I ′,L, I) of maximal intervals I′ with respect to

every list of maximal intervals of list L
union all(L, I) I is the list of maximal intervals

produced by the union of the lists of
maximal intervals of list L

intersect all(L, I) I is the list of maximal intervals
produced by the intersection of
the lists of maximal intervals of list L

We represent instantaneous SDEs and CEs by means of happen-
sAt, while durative SDEs and CEs are represented as fluents. The
majority of CEs are durative and, therefore, in CE recognition the
task generally is to compute the maximal intervals for which a fluent
representing a CE has a particular value continuously.

2.1 Simple Fluents
Fluents in RTEC are simple or statically determined. We assume,
without loss of generality, that these types are disjoint. For a sim-
ple fluent F , F =V holds at a particular time-point T if F =V has
been initiated by an event that has occurred at some time-point ear-
lier than T , and has not been terminated at some other time-point
in the meantime. This is an implementation of the law of inertia. To
compute the intervals I for which F =V , i.e. holdsFor(F =V, I),
we find all time-points Ts at which F =V is initiated, and then, for
each Ts, we compute the first time-point Tf after Ts at which F =V
is ‘broken’. The time-points at which F =V is initiated are com-
puted by means of domain-specific initiatedAt rules. The time-points
at which F =V is ‘broken’ are computed as follows:

broken(F =V, Ts, T)←
terminatedAt(F =V, Tf), Ts < Tf ≤ T

(1)

broken(F =V1, Ts, T)←
initiatedAt(F =V2, Tf), Ts < Tf ≤ T, V1 6= V2

(2)

broken(F =V, Ts, T) represents that a maximal interval starting at
Ts for which F =V holds continuously is terminated at some time
Tf such that Ts<Tf≤T . Similar to initiatedAt, terminatedAt rules are
domain-specific (examples are presented below). According to rule
(2), if F =V2 is initiated at Tf then effectively F =V1 is terminated
at time Tf , for all other possible values V1 of F . Rule (2) ensures
therefore that a fluent cannot have more than one value at any time.
We do not insist that a fluent must have a value at every time-point.
There is a difference between initiating a Boolean fluent F = false
and terminating F = true: the former implies, but is not implied by,
the latter.

RTEC stores and indexes holdsFor intervals as they are computed
for any given fluent-value F =V : thereafter intervals for F =V

are retrieved from the computer memory without the need for re-
computation. Similarly, a holdsAt query for F =V looks up F ’s
value in the holdsFor cache.

In public space surveillance, it is often required to detect when a
person leaves an object unattended. Typically, an object carried by a
person is not tracked by the computer vision algorithms—only the
person that carries it is tracked. The object will be tracked, i.e. it will
‘appear’, if and only if the person leaves it somewhere. Moreover,
objects (as opposed to persons) can exhibit only inactive activity. Ac-
cordingly, we define a durative ‘leaving an object’ CE as follows:

initiatedAt(leaving object(P ,Obj)= true, T)←
happensAt(appear(Obj), T),
holdsAt(inactive(Obj)= true, T),
holdsAt(close(P ,Obj)= true, T),
holdsAt(person(P)= true, T)

(3)

initiatedAt(leaving object(P ,Obj)= false, T)←
happensAt(disappear(Obj), T)

(4)

In rule (3) leaving object(P ,Obj)= true is initiated at time T if
Obj ‘appears’ at T , it is inactive at T , and there is a person P ‘close’
to Obj at T . appear and inactive are instantaneous SDE and du-
rative SDE respectively. SDE are detected on video frames in this
application. close(A,B) is true when the distance between A and B
does not exceed some threshold of pixel positions.

There is no explicit information about whether a tracked entity
is a person or an inanimate object. We define the simple fluent
person(P) to have value true if P has been active, walking, running
or moving abruptly since P first ‘appeared’. The value of person(P)
has to be time-dependent because the identifier P of a tracked entity
that ‘disappears’ (is no longer tracked) at some point may be used
later to refer to another entity that ‘appears’ (becomes tracked), and
that other entity may not necessarily be a person. This is a feature of
the application and not something that is imposed by RTEC.

Unlike the specification of person , it is not clear from the data
whether a tracked entity is an object. person(P)= false does not
necessarily mean that P is an object; it may be that P is not tracked,
or that P is a person that has never walked, run, been active or moved
abruptly. Note finally that rule (3) incorporates a reasonable simpli-
fying assumption, that a person entity will never exhibit ‘inactive’
activity at the moment it first ‘appears’ (is tracked). If an entity is
‘inactive’ at the moment it ‘appears’ it can be assumed to be an ob-
ject, as in the first two conditions of rule (3).

Rule (4) expresses the conditions in which leaving object ceases
to be recognised. leaving object(P ,Obj) becomes false when
the object in question is picked up. An object that is picked
up by someone is no longer tracked—it ‘disappears’—terminating
leaving object . (disappear is an instantaneous SDE.) The maximal
intervals during which leaving object(P ,Obj)= true holds contin-
uously are computed using the built-in RTEC predicate holdsFor
from rules (3) and (4).

Consider another example from public space surveillance:

initiatedAt(moving(P1 ,P2)= true, T) ←
happensAt(start(walking(P1)= true), T),
holdsAt(walking(P2)= true, T),
holdsAt(close(P1 ,P2)= true, T)

(5)

10

initiatedAt(moving(P1 ,P2)= true, T) ←
happensAt(start(walking(P2)= true), T),
holdsAt(walking(P1)= true, T),
holdsAt(close(P1 ,P2)= true, T)

(6)

initiatedAt(moving(P1 ,P2)= true, T) ←
happensAt(start(close(P1 ,P2)= true), T),
holdsAt(walking(P1)= true, T),
holdsAt(walking(P2)= true, T)

(7)

terminatedAt(moving(P1 ,P2)= true, T) ←
happensAt(end(walking(P1)= true), T)

(8)

terminatedAt(moving(P1 ,P2)= true, T) ←
happensAt(end(walking(P2)= true), T)

(9)

terminatedAt(moving(P1 ,P2)= true, T) ←
happensAt(end(close(P1 ,P2)= true), T)

(10)

walking is a durative SDE detected on video frames. start(F =V)
(resp. end(F =V)) is a built-in RTEC event taking place at each
starting (ending) point of each maximal interval for which F =V
holds continuously. The above formalisation states that P1 is moving
with P2 when they are walking close to each other.

One of the main attractions of RTEC is that it makes available
the power of logic programming to express complex temporal and
atemporal constraints, as conditions in initiatedAt and terminatedAt
rules for durative CEs, and happensAt rules for instantaneous CEs.
E.g. standard event algebra operators, such as sequence, disjunction,
parallelism, etc, may be expressed in a RTEC event description.

2.2 Statically Determined Fluents
In addition to the domain-independent definition of holdsFor, an
event description may include domain-specific holdsFor rules, used
to define the values of a fluent F in terms of the values of other flu-
ents. We call such a fluent F statically determined. holdsFor rules of
this kind make use of interval manipulation constructs—see the last
three items of Table 1. Consider, e.g. moving as in rules (5)–(10) but
defined instead as a statically determined fluent:

holdsFor(moving(P1 ,P2)= true, I)←
holdsFor(walking(P1)= true, I1),
holdsFor(walking(P2)= true, I2),
holdsFor(close(P1 ,P2)= true, I3),
intersect all([I1 , I2 , I3], I)

(11)

The list I of maximal intervals during which P1 is moving with P2

is computed by determining the list I1 of maximal intervals during
which P1 is walking, the list I2 of maximal intervals during which P2

is walking, the list I3 of maximal intervals during which P1 is close
to P2, and then calculating the list I representing the intersections of
the maximal intervals in I1, I2 and I3.

RTEC provides three interval manipulation constructs: union all,
intersect all and relative complement all. union all(L, I) computes
the list I of maximal intervals representing the union of maximal
intervals of the lists of list L. For instance:

union all([[(5, 20), (26, 30)], [(28, 35)]], [(5, 20), (26, 35)])

A term of the form (Ts ,Te) in RTEC represents the closed-open
interval [Ts ,Te). I in union all(L, I) is a list of maximal intervals
that includes each time-point that is part of at least one list of L.

intersect all(L, I) computes the list I of maximal intervals such
that I represents the intersection of maximal intervals of the lists of

list L, as, e.g.:

intersect all([[(26, 31)], [(21, 26), (30, 40)]], [(30, 31)])

I in intersect all(L, I) is a list of maximal intervals that includes each
time-point that is part of all lists of L.

relative complement all(I ′, L, I) computes the list I of maximal
intervals such that I represents the relative complements of the list
of maximal intervals I ′ with respect to the maximal intervals of the
lists of list L. Below is an example of relative complement all:

relative complement all([(5, 20), (26, 50)],
[[(1, 4), (18, 22)], [(28, 35)]], [(5, 18), (26, 28), (35, 50)])

I in relative complement all(I ′, L, I) is a list of maximal intervals
that includes each time-point of I ′ that is not part of any list of L.

When defining a statically determined fluent F we will often want
to say that, for all time-points T , F =V holds at T if and only if W
holds at T where W is some Boolean combination of fluent-value
pairs. RTEC provides optional shorthands for writing such defini-
tions concisely. For example, the definition

G=V iff
(A=V1 or B=V2),
(A=V ′1 or B=V ′2),
not C =V3

(12)

is expanded into the following holdsFor rule:

holdsFor(G=V, I) ←
holdsFor(A=V1, I1), holdsFor(B=V2, I2),
union all([I1, I2], I3),
holdsFor(A=V ′1 , I4), holdsFor(B=V ′2 , I5),
union all([I4, I5], I6),
intersect all([I3, I6], I7),
holdsFor(C =V3, I8),
relative complement all(I7, [I8], I)

(13)

The required transformation takes place automatically when event
descriptions are loaded into RTEC.

For a wide range of fluents, the use of interval manipulation
constructs leads to a much more concise definition than the tradi-
tional style of Event Calculus representation, i.e. identifying the var-
ious conditions under which the fluent is initiated and terminated
so that maximal intervals can then be computed using the domain-
independent holdsFor. Compare, e.g. the statically determined and
simple fluent representations of moving in rules (11) and (5)–(10)
respectively.

The interval manipulation constructs of RTEC can also lead to
much more efficient computation. The complexity analysis may be
found in [3].

2.3 Semantics
CE definitions are (locally) stratified logic programs [25]. We restrict
attention to hierarchical definitions, those where it is possible to de-
fine a function level that maps all fluent-values F =V and all events
to the non-negative integers as follows. Events and statically deter-
mined fluent-values F =V of level 0 are those whose happensAt
and holdsFor definitions do not depend on any other events or flu-
ents. In CE recognition, they represent the input SDEs. There are
no fluent-values F =V of simple fluents F in level 0. Events and
simple fluent-values of level n are defined in terms of at least one

11

event or fluent-value of level n−1 and a possibly empty set of events
and fluent-values from levels lower than n−1. Statically determined
fluent-values of level n are defined in terms of at least one fluent-
value of level n−1 and a possibly empty set of fluent-values from
levels lower than n−1. Note that fluent-values F =Vi and F =Vj

for Vi 6=Vj could be mapped to different levels. For simplicity how-
ever, and without loss of generality, a fluent F itself is either simple
or statically determined but not both. The CE definitions of public
space surveillance, i.e. the holdsFor definitions of statically deter-
mined fluents, initiatedAt and terminatedAt definitions of simple flu-
ents and happensAt definitions of events, are available with the RTEC
code.

3 Run-Time Recognition
CE recognition has to be efficient enough to support real-time
decision-making, and scale to very large numbers of SDEs and CEs.
SDEs may not necessarily arrive at the CE recognition system in a
timely manner, i.e. there may be a (variable) delay between the time
at which SDEs take place and the time at which they arrive at the CE
recognition system. Moreover, SDEs may be revised, or even com-
pletely discarded in the future, as in the case where the parameters of
a SDE were originally computed erroneously and are subsequently
revised, or in the case of retraction of a SDE that was reported by
mistake, and the mistake was realised later [1]. Note that SDE re-
vision is not performed by the CE recognition system, but by the
underlying SDE detection system.

RTEC performs CE recognition by computing and storing the
maximal intervals of fluents and the time-points in which events oc-
cur. CE recognition takes place at specified query times Q1, Q2,
At each Qi the SDEs that fall within a specified interval—the ‘work-
ing memory’ (WM) or ‘window’—are taken into consideration. All
SDEs that took place before or at Qi−WM are discarded. This is to
make the cost of CE recognition dependent only on the WM size and
not on the complete SDE history. The WM size, and the temporal dis-
tance between two consecutive query times — the ‘step’ (Qi−Qi−1)
— are set by the user.

At Qi, the maximal intervals computed by RTEC are those that can
be derived from SDEs that occurred in the interval (Qi−WM, Qi], as
recorded at time Qi. When WM is longer than the inter-query step,
i.e., when Qi−WM<Qi−1<Qi, it is possible that an SDE occurs in
the interval (Qi−WM, Qi−1] but arrives at RTEC only after Qi−1;
its effects are taken into account at query time Qi. And similarly
for SDEs that took place in (Qi−WM, Qi−1] and were subsequently
revised after Qi−1. In the common case that SDEs arrive at RTEC
with delays, or there is SDE revision, it is preferable therefore to
make WM longer than the inter-query step. Note that information
may still be lost. Any SDEs arriving or revised between Qi−1 and
Qi are discarded at Qi if they took place before or at Qi−WM. To
reduce the possibility of losing information, one may increase the
WM size. Doing so, however, decreases recognition efficiency.

Figure 1 illustrates windowing in RTEC. In this example we have
WM>Qi−Qi−1. To avoid clutter, Figure 1 shows streams of only
five SDEs. These are displayed below WM, with dots for instanta-
neous SDEs and lines for durative ones. For the sake of the example,
we are interested in recognising just two CEs:

• CEs , represented as a simple fluent (see Section 2.1). The starting
and ending points, and the maximal intervals of CEs are displayed
above WM in Figure 1.

• CEstd , represented as a statically determined fluent (see Section
2.2). For the example, the maximal intervals of CEstd are defined

time

Q136

Working Memory

Q139Q138Q137Q135

time

Q136

Working Memory

Q139Q138Q137Q135

time

Q136

(c)

Working Memory

Q139Q138Q137Q135

(a)

(b)

CEstd

CEs

CEstd

CEs

CEstd

CEs

Figure 1: Windowing in RTEC.

to be the union of the maximal intervals of the two durative SDEs
in Figure 1. The maximal intervals of CEstd are displayed above
the CEs intervals.

For simplicity, we assume that both CEs and CEstd are defined only
in terms of SDE, i.e. they are not defined in terms of other CEs.

Figure 1 shows the steps that are followed in order to recognise
CEs at an arbitrary query time, say Q138. Figure 1(a) shows the
state of RTEC as computation begins at Q138. All SDEs that took
place before or at Q137−WM were retracted at Q137. The thick lines
and dots represent the SDEs that arrived at RTEC between Q137 and
Q138; some of them took place before Q137. Figure 1(a) also shows
the maximal intervals for the CE fluents CEs and CEstd that were
computed and stored at Q137.

The CE recognition process at Q138 considers the SDEs that took
place in (Q138−WM, Q138]. All SDEs that took place before or
at Q138−WM are discarded, as shown in Figure 1(b). For durative
SDEs that started before Q138−WM and ended after that time, RTEC
retracts the sub-interval up to and including Q138−WM. Figure 1(b)
shows the interval of a SDE that is partially retracted in this way.

Now consider CE intervals. At Qi some of the maximal intervals
computed at Qi−1 might have become invalid. This is because some
SDEs occurring in (Qi−WM, Qi−1] might have arrived or been re-
vised after Qi−1: their existence could not have been known at Qi−1.
Determining which CE intervals should be (partly) retracted in these
circumstances can be computationally very expensive. See Section 5
for a discussion. We find it simpler, and more efficient, to discard all
CE intervals in (Qi−WM, Qi] and compute all intervals from scratch
in that period. CE intervals that have ended before or at Qi−WM are
discarded. Depending on the user requirements, these intervals may
be stored in a database for retrospective inspection of the activities
of a system.

In Figure 1(b), the earlier of the two maximal intervals computed
for CEstd at Q137 is discarded at Q138 since its endpoint is before

12

Q138−WM. The later of the two intervals overlaps Q138−WM (an
interval ‘overlaps’ a time-point t if the interval starts before or at
t and ends after or at that time) and is partly retracted at Q138. Its
starting point could not have been affected by SDEs arriving between
Q138−WM and Q138 but its endpoint has to be recalculated. Accord-
ingly, the sub-interval from Q138−WM is retracted at Q138.

In this example, the maximal intervals of CEstd are determined
by computing the union of the maximal intervals of the two dura-
tive SDEs shown in Figure 1. At Q138, only the SDE intervals in
(Q138−WM, Q138] are considered. In the example, there are two
maximal intervals for CEstd in this period as can be seen in Fig-
ure 1(c). The earlier of them has its startpoint at Q138−WM. Since
that abuts the existing, partially retracted sub-interval for CEstd

whose endpoint is Q138−WM, those two intervals are amalgamated
into one continuous maximal interval as shown in Figure 1(c). In this
way, the endpoint of the CEstd interval that overlapped Q138−WM
at Q137 is recomputed to take account of SDEs available at Q138. (In
this particular example, it happens that the endpoint of this interval
is the same as that computed at Q137. That is merely a feature of this
particular example. Had CEstd been defined e.g. as the intersection
of the maximal intervals of the two durative SDE, then the intervals
of CEstd would have changed in (Q138−WM, Q137].)

Figure 1 also shows how the intervals of the simple fluent CEs

are computed at Q138. Arrows facing upwards (downwards) denote
the starting (ending) points of CEs intervals. First, in analogy with
the treatment of statically determined fluents, the earlier of the two
CEs intervals in Figure 1(a), and its start and endpoints, are re-
tracted. They occur before Q138−WM. The later of the two intervals
overlaps Q138−WM. The interval is retracted, and only its starting
point is kept; its new endpoint, if any, will be recomputed at Q138.
See Figure 1(b). For simple fluents, it is simpler, and more efficient,
to retract such intervals completely and reconstruct them later from
their start and endpoints by means of the domain-independent holds-
For rules, rather than keeping the sub-interval that takes place before
Q138−WM, and possibly amalgamating it later with another interval,
as we do for statically determined fluents.

The second step for CEs at Q138 is to calculate its starting
and ending points by evaluating the relevant initiatedAt and termi-
natedAt rules. For this, we only consider SDEs that took place in
(Q138−WM, Q138]. Figure 1(c) shows the starting and ending points
of CEs in (Q138−WM, Q138]. The last ending point of CEs that was
computed at Q137 was invalidated in the light of the new SDEs that
became available at Q138 (compare Figures 1(c)–(a)). Moreover, an-
other ending point was computed at an earlier time.

Finally, in order to recognise CEs at Q138 we use the domain-
independent holdsFor to calculate the maximal intervals of CEs

given its starting and ending points. The later of the two CEs inter-
vals computed at Q137 became shorter when re-computed at Q138.
The second interval of CEs at Q138 is open: given the SDEs avail-
able at Q138, we say that CEs holds since time t, where t is the last
starting point of CEs .

The discussion above showed that, when SDEs arrive with a vari-
able delay, CE intervals computed at an earlier query time may be
(partly) retracted at the current or a future query time. (And sim-
ilarly if SDEs are revised.) Depending on the application require-
ments, RTEC may be set to report:

• CEs as soon as they are recognised, even if their intervals may be
(partly) retracted in the future.

• CEs whose intervals may be partly, but not completely, retracted
in the future, i.e. CEs whose intervals overlap Qi+1−WM.

• CEs whose intervals will not be even partly retracted in the future,
i.e. CEs whose intervals end before or at Qi+1−WM.

The example used for illustration shows how RTEC performs CE
recognition. To support real-time reasoning, at each query time Qi all
SDEs that took place before or at Qi−WM are discarded. To handle
efficiently delayed SDEs and SDE revision, CE intervals within WM
are computed from scratch. At Qi, the computed maximal CE inter-
vals are those that can be derived from SDEs that occurred in the
interval (Qi−WM, Qi], as recorded at time Qi. For completeness,
RTEC amalgamates the computed intervals to any intervals ending at
Qi−WM. More details about CE recognition in RTEC may be found
at [3].

4 Experimental Results

We present experimental results on the public space surveillance
application. The experiments were performed on a computer with
eight Intel i7 950@3.07GHz processors and 12GiB RAM, running
Ubuntu Linux 12.04 and YAP Prolog 6.2.2. Each CE recognition
time displayed in this section is the average of 30 runs. We use the
CAVIAR benchmark dataset consisting of 28 surveillance videos of
a public space <http://groups.inf.ed.ac.uk/vision/
CAVIAR/CAVIARDATA1>. The videos are staged—actors walk
around, sit down, meet one another, leave objects behind, etc. Each
video has been manually annotated by the CAVIAR team in order
to provide the ground truth for ‘short-term activities’, i.e. activities
taking place in a short period of time detected on individual video
frames. (The frame rate in CAVIAR is 40 ms.) The short-term ac-
tivities of CAVIAR concern an entity (person or object) entering or
exiting the surveillance area, walking, running, moving abruptly, be-
ing active or inactive. The CAVIAR team has also annotated the 28
videos with ‘long-term activities’: a person leaving an object unat-
tended, two people meeting, moving together and fighting. Short-
term activities can be viewed as SDEs while long-term activities can
be viewed as CEs. Consequently, the input to RTEC in this case study
includes the set of annotated short-term activities, and the output is
a set of recognised long-term activities. The CE definitions and the
datasets on which the experiments were performed are available with
the RTEC code.

CE recognition for multiple pairs of entities. Figure 2(a) shows
the results of experiments concerning all 45 pairs of the 10 entities
tracked in the CAVIAR dataset. (In CAVIAR each CE concerns a pair
of entities.) On average, 179 SDEs are detected per sec. We used a
single processor for CE recognition concerning all 45 tracked pairs.
That requires computing and storing the intervals of 645 CEs. We
varied WM from 10 sec (≈2,000 SDEs) to 110 sec (≈19,000 SDEs).
The inter-query step is set to 5 sec (≈1,000 SDEs). In all settings
shown in Figure 2(a), RTEC performs real-time CE recognition.

Larger datasets. We constructed a larger dataset by taking ten
copies of the original CAVIAR dataset with new identifiers for the
tracked entities in each copy. The resulting dataset has 100 tracked
entities, i.e. 4,950 entity pairs, while on average 1,800 SDEs take
place per sec. According to the use case survey of the Event Pro-
cessing Technical Society [5], in the resulting dataset there are more
SDEs per sec than in most applications. First, we used a single pro-
cessor for CE recognition. In this case, the intervals of approximately
64,000 CEs were computed and stored. Second, we used all eight
processors of the computer in parallel. Consequently, each instance
of RTEC running on a processor computed and stored the intervals
of approximately 8,000 CEs. We emphasize that the input data was

13

0
2
4
6
8

10
12
14
16
18
20

10 sec ≈
2K SDE

30 sec ≈
5K SDE

50 sec ≈
9K SDE

70 sec ≈
12K SDE

90 sec ≈
15,5K SDE

110 sec ≈
19K SDE

Ti
m

e
 (

m
s)

Working Memory

1 processor/645 CE

CE recognition for all 10 CAVIAR tracked entities.

0

0,5

1

1,5

2

2,5

3

10 sec ≈
18K SDE

30 sec ≈
53K SDE

50 sec ≈
88K SDE

70 sec ≈
120K SDE

90 sec ≈
156K SDE

110 sec ≈
192K SDE

Ti
m

e
 (

se
c)

Working Memory

8 processors/8K CE per processor 1 processor/64K CE

CE recognition for 100 tracked entities.

Figure 2: Event Recognition for Public Space Surveillance.

the same in all sets of experiments: each processor receives SDEs
coming from all tracked entities—i.e. there was no SDE filtering to
restrict the input relevant for each processor. We rely only on the
indexing mechanism of RTEC to pick out relevant SDEs from the
stream. RTEC employs a very simple indexing mechanism: it merely
exploits YAP Prolog’s standard indexing on the functor of the first
argument of the head of a clause.

As in the previous set of experiments, the inter-query step is set
to 5 sec, while the size of the WM varies from 10 to 110 sec. In this
case, however, step includes approximately 9,000 SDEs, and WM
varies from 18,000 to 192,000 SDEs. Figure 2(b) shows the aver-
age CE recognition times. In all cases RTEC performs real-time CE
recognition. Figure 2(b) also shows that we can achieve significant
performance gain by running RTEC in parallel on different proces-
sors. Such a gain is achieved without requiring SDE filtering.

5 Discussion
We presented RTEC, an Event Calculus dialect with novel implemen-
tation techniques that allow for efficient CE recognition, scalable to
large numbers of SDEs and CEs. RTEC remains efficient and scal-
able in applications where SDEs arrive with a (variable) delay from,
or are revised by, the SDE detection systems: it can update the al-
ready recognised CEs, and recognise new CEs, when SDEs are arrive
with a delay or following revision.

RTEC has a formal, declarative semantics as opposed to most
complex event processing languages, several data stream processing
and event query languages, and most commercial production rule
systems. Furthermore, RTEC has available the power of logic pro-
gramming and thus supports atemporal reasoning and reasoning over
background knowledge (as opposed to e.g. [2, 13, 19, 9]), has built-
in axioms for complex temporal phenomena (as opposed to [26, 1]),
explicitly represents CE intervals and thus avoids the related logical
problems (as opposed to e.g. [22, 13, 9, 15]), and supports out-of-
order SDE streams (as opposed to [14, 12, 9, 11, 20, 24]). Concern-
ing the Event Calculus literature, a key feature of RTEC is that it
includes a windowing technique. In contrast, no Event Calculus sys-
tem (including e.g. [8, 7, 23, 24, 6]) ‘forgets’ or represents concisely
the SDE history.

The ‘Cached Event Calculus’ [8] performs update-time reason-
ing: it computes and stores the consequences of a SDE as soon as
it arrives. Query processing, therefore, amounts to retrieving the ap-
propriate CE intervals from the computer memory. When a maximal

interval of a fluent is asserted or retracted due to a delayed SDE, the
assertion/retraction is propagated to the fluents whose validity may
rely on such an interval. E.g. propagateAssert([T1 ,T2],U) in the
Cached Event Calculus checks whether there are new initiations as
a result of asserting the interval (T1, T2] of fluent U . In particular,
propagateAssert checks whether: (1) the asserted fluent U is a con-
dition for the initiation of a fluent F at the occurrence of event E,
(2) the occurrence time T of E belongs to (T1, T2], and (3) there is
not already a maximal interval for F with T as its starting point. If
the above conditions are satisfied, propagateAssert recursively calls
updateInit(E ,T ,F) in order to determine if F is now initiated at
T , and if it is, to update the fluent interval database accordingly.

propagateAssert also checks whether there are new terminations
as a result of a fluent interval assertion, while propagateRetract
checks whether there are new initiations and terminations as a re-
sult of a fluent interval retraction. The cost of propagateAssert
and propagateRetract is very high, especially in applications where
the CE definitions include many rules with several fluents that de-
pend on several other fluents. Furthermore, this type of reasoning
is performed very frequently. RTEC avoids the costly checks ev-
ery time a fluent interval is asserted/retracted due to delayed SDE
arrival/revision. We found that in RTEC it is more efficient, and
simpler, to discard at each query time Qi, all intervals of flu-
ents representing CEs in (Qi−WM ,Qi] and compute from scratch
all such intervals given the SDEs available at Qi and detected in
(Qi−WM ,Qi].

For further work, we are developing techniques, based on
abductive-inductive logic programming, for automated generation
and refinement of CE definitions from very large datasets, with the
aim of minimising the time-consuming and error-prone process of
manual CE definition construction [16]. We are also porting RTEC
into probabilistic logic programming frameworks, in order to deal
with various types of uncertainty, such as imperfect CE definitions,
incomplete and erroneous SDE streams [17].

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their very help-
ful comments. This work has been partly funded by the EU FP7
project SPEEDD (619435).

14

REFERENCES

[1] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, ‘Real-time complex
event recognition and reasoning’, Applied Artificial Intelligence, 26(1–
2), 6–57, (2012).

[2] A. Arasu, S. Babu, and J. Widom, ‘The CQL continuous query lan-
guage: semantic foundations and query execution’, The VLDB Journal,
15(2), 121–142, (2006).

[3] A. Artikis, M. Sergot, and G. Paliouras, ‘Run-time composite event
recognition’, in DEBS, pp. 69–80. ACM, (2012).

[4] A. Artikis, A. Skarlatidis, F. Portet, and G. Paliouras, ‘Logic-based
event recognition’, Knowledge Engineering Review, 27(4), 469–506,
(2012).

[5] P. Bizzaro. Results of the survey on event processing use
cases. Event Processing Technical Society, March 2011.
http://www.slideshare.net/pedrobizarro/
epts-survey-results.

[6] I. Cervesato and A. Montanari, ‘A calculus of macro-events: Progress
report’, in TIME, pp. 47–58, (2000).

[7] F. Chesani, P. Mello, M. Montali, and P. Torroni, ‘A logic-based, reac-
tive calculus of events’, Fundamenta Informaticae, 105(1-2), 135–161,
(2010).

[8] L. Chittaro and A. Montanari, ‘Efficient temporal reasoning in the
cached event calculus’, Computational Intelligence, 12(3), 359–382,
(1996).

[9] G. Cugola and A. Margara, ‘TESLA: a formally defined event specifi-
cation language’, in DEBS, pp. 50–61, (2010).

[10] G. Cugola and A. Margara, ‘Processing flows of information: From data
stream to complex event processing’, ACM Computing Surveys, 44(3),
15, (2012).

[11] N. Dindar, P. M. Fischer, M. Soner, and N. Tatbul, ‘Efficiently correlat-
ing complex events over live and archived data streams’, in DEBS, pp.
243–254, (2011).

[12] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura, W.-P. Hsiung, and
K. Candan, ‘Runtime semantic query optimization for event stream pro-
cessing’, in ICDE, pp. 676–685, (2008).

[13] C. Dousson and P. Le Maigat, ‘Chronicle recognition improvement
using temporal focusing and hierarchisation’, in IJCAI, pp. 324–329,
(2007).

[14] D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, P. Stahlberg, and G. Ander-
son, ‘SASE: Complex event processing over streams’, in CIDR, (2007).

[15] A. Kakas, L. Michael, and R. Miller, ‘Modular-E : An elaboration tol-
erant approach to the ramification and qualification problems’, in LP-
NMR, pp. 211–226, (2005).

[16] Nikos Katzouris, Alexander Artikis, and George Paliouras, ‘Incremen-
tal learning of event definitions with inductive logic programming’,
CoRR, abs/1402.5988, (2014).

[17] A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, and R. Rocha,
‘On the implementation of the probabilistic logic programming lan-
guage ProbLog’, Theory and Practice of Logic Programming, 11, 235–
262, (2011).

[18] R. Kowalski and M. Sergot, ‘A logic-based calculus of events’, New
Generation Computing, 4(1), 67–96, (1986).

[19] J. Krämer and B. Seeger, ‘Semantics and implementation of continu-
ous sliding window queries over data streams’, ACM Transactions on
Database Systems, 34(1), 1–49, (2009).

[20] M. Li, M. Mani, E. A. Rundensteiner, and T. Lin, ‘Complex event pat-
tern detection over streams with interval-based temporal semantics’, in
DEBS, pp. 291–302, (2011).

[21] D. Luckham and R. Schulte. Event processing glossary — version 1.1.
Event Processing Technical Society, July 2008.

[22] K. Mahbub, G. Spanoudakis, and A. Zisman, ‘A monitoring approach
for runtime service discovery’, Automated Software Engineering, 18(2),
117–161, (2011).

[23] M. Montali, F. M. Maggi, F. Chesani, P. Mello, and W. M. P. van der
Aalst, ‘Monitoring business constraints with the Event Calculus’, ACM
TIST, 5(1), (2014).

[24] A. Paschke and M. Bichler, ‘Knowledge representation concepts for
automated SLA management’, Decision Support Systems, 46(1), 187–
205, (2008).

[25] T. Przymusinski, ‘On the declarate semantics of stratified deductive
databases and logic programs’, in Foundations of Deductive Databases
and Logic Programming, Morgan, (1987).

[26] V. Shet, J. Neumann, V. Ramesh, and L. Davis, ‘Bilattice-based logical
reasoning for human detection’, in CVPR, (2007).

15

Towards Ideal Semantics for Analyzing Stream Reasoning1

Harald Beck and Minh Dao-Tran and Thomas Eiter and Michael Fink 2

Abstract. The rise of smart applications has drawn interest to logi-
cal reasoning over data streams. Recently, different query languages
and stream processing/reasoning engines were proposed in different
communities. However, due to a lack of theoretical foundations, the
expressivity and semantics of these diverse approaches are given only
informally. Towards clear specifications and means for analytic study,
a formal framework is needed to define their semantics in precise
terms. To this end, we present a first step towards an ideal semantics
that allows for exact descriptions and comparisons of stream reasoning
systems.

1 Introduction
The emergence of sensors, networks, and mobile devices has gener-
ated a trend towards pushing rather than pulling of data in information
processing. In the setting of stream processing [4] studied by the
database community, input tuples dynamically arrive at the processing
systems in form of possibly infinite streams. To deal with unbound-
edness of data, such systems typically apply window operators to
obtain snapshots of recent data. The user then runs continuous queries
which are either periodically driven by time or eagerly driven by the
arrival of new input. The Continuous Query Language (CQL) [3] is a
well-known stream processing language. It has a syntax close to SQL
and a clear operational semantics.

Recently, the rise of smart applications such as smart cities, smart
home, smart grid, etc., has raised interest in the topic of stream rea-
soning [16], i.e., logical reasoning on streaming data. To illustrate
our contributions on this topic, we use an example from the public
transport domain.

Example 1 To monitor a city’s public transportation, the city traffic
center receives sensor data at every stop regarding tram/bus appear-
ances of the form tr(X,P) and bus(X,P) where X , P hold the
tram/bus and stop identifiers, respectively. On top of this streaming
data tuples (or atoms), one may ask different queries, e.g., to monitor
the status of the public transport system. To keep things simple, we
start with stream processing queries:

(q1) At stop P , did a tram and a bus arrive within the last 5 min?
(q2) At stop P , did a tram and a bus arrive at the same time within

the last 5 min?

Consider the scenario of Fig. 1 which depicts arrival times of trams
and buses. The answer to query (q2) is yes for stop p2 and all time
points from 2 to 7. Query (q1) also succeeds for p1 from 11 to 13.

As for stream reasoning, later we will additionally consider a more
involved query, where we are interested in whether a bus always
arrived within three minutes after the last two arrivals of trams. �

1 Supported by the Austrian Science Fund (FWF) project 26471.
2 Institut für Informationssysteme, Technische Universität Wien. email:
{beck,dao,eiter,fink}@kr.tuwien.ac.at

tr(a, p1)

bus(c, p1)

tr(d, p2) bus(e, p2)

0 2 8 11

Figure 1. Traffic scenario with arrivals of trams and buses

Different communities have contributed to different aspects of this
topic. (i) The Semantic Web community extends SPARQL to allow
querying on streams of RDF triples. Engines such as CQELS [14]
and C-SPARQL [5] also follow the snapshot semantics approach
of CQL. (ii) In Knowledge Representation and Reasoning (KRR),
first attempts towards expressive stream reasoning have been carried
out by considering continuous data in Answer Set Programming
(ASP) [9, 11] or extending Datalog to sequential logic programs [17].
However, the state of the art in either field has several shortcomings.

Approaches in (i) face difficulties with extensions of the formalism
to incorporate the Closed World Assumption, nonmonotonicity, or
non-determinism. Such features are important to deal with missing
of incomplete data, which can temporarily happen due to unstable
network connections or hardware failure. In this case, engines like
C-SPARQL and CQELS remain idle, while some output based on
default reasoning might be useful. Moreover, e.g., in the use case
of dynamic planning on live data, multiple plans shall be generated
based on previous choices and the availability of new data. This is not
possible with current deterministic approaches.

On the other hand, advanced reasoning has extensively been in-
vestigated in (ii) but traditionally only on static data. First attempts
towards stream reasoning reveal many problems to solve. The plain
approach of [9] periodically calls the dlvhex solver [10] but is not
capable of incremental reasoning and thus fails under heavy load
of data. StreamLog [17] is an extension of Datalog towards stream
reasoning. It always computes a single model and does not consider
windows. Time-decaying logic programs [11] attempt to implement
time-based windows in reactive ASP [13] but the relation to other
stream processing/reasoning approaches has not yet been explored.

Moreover, as observed in [8], conceptually identical queries may
produce different results in different engines. While such deviations
may occur due to differences (i.e., flaws) in implementations of a com-
mon semantics, they might also arise from (correct implementations
of) different semantics. For a user it is important to know the exact
capabilities and the semantic behavior of a given approach. However,
there is a lack of theoretical underpinning or a formal framework for
stream reasoning that allows to capture different (intended) seman-
tics in precise terms. Investigations of specific languages, as well as
comparisons between different approaches, are confined to experi-
mental analysis [15], or informal examination on specific examples. A

17

systematic investigation, however, requires a formalism to rigorously
describe the expressivity and the properties of a language.
Contributions. We present a first step towards a formal framework
for stream reasoning that (i) provides a common ground to express
concepts from different stream processing/reasoning formalisms and
engines; (ii) allows systematic analysis and comparison between ex-
isting stream processing/reasoning semantics; and (iii) also provides a
basis for extension towards more expressive stream reasoning. More-
over, we present (iv) exemplary formalizations based on a running
example, and (v) compare our approach to existing work.

Thereby, we aim at capturing idealized stream reasoning semantics
where no information is dropped and semantics are characterized as
providing an abstract view over the entire stream. Second, we idealize
with respect to implementations and do not consider processing time,
delays or outages in the semantics itself. Moreover, we allow for a
high degree of expressivity regarding time reference: We distinguish
notions of truth of a formula (i) at specific time points, (ii) some time
point within a window, or (iii) all time points in a window. Moreover,
we allow (iv) for nested window operators, which provide a means to
reason over streams within the language itself (a formal counterpart
to repeated runs of continuous queries).

2 Streams
In this section, we introduce a logic-oriented view of streams and
formally define generalized versions of prominent window functions.

2.1 Streaming Data
A stream is usually seen as a sequence, set or bag of tuples with a
timestamp. Here, we view streams as functions from a discrete time
domain to sets of logical atoms and assume no fixed schema for tuples.

We build upon mutually disjoint sets of predicates P , con-
stants C, variables V and time variables U . The set T of
terms is given by C ∪ V and the set A of atoms is defined as
{p(t1, . . . , tn) | p ∈ P, t1, . . . , tn ∈ T }. The set G of ground atoms
contains all atoms p(t1, . . . , tn) ∈ A such that {t1, . . . , tn} ⊆ C.
If i, j ∈ N, the set [i, j] = {k∈N | i ≤ k ≤ j} is called an interval.

Definition 1 (Stream) Let T be an interval and υ : N→ 2G an in-
terpretation function such that υ(t) = ∅ for all t ∈ N \ T . Then, the
pair S = (T, υ) is called a stream, and T is called the timeline of S.

The elements of a timeline are called time points or timestamps. A
stream S′ = (T ′, υ′) is a substream or window of stream S = (T, υ),
denoted S′ ⊆ S, if T ′ ⊆ T and υ′(t′) ⊆ υ(t′) for all t′ ∈ T ′.
The cardinality of S, denoted #S, is defined by Σt∈T |υ(t)|. The
restriction of S to T ′ ⊆ T , denoted S|T ′ , is the stream (T ′, υ|T ′),
where υ|T ′ is the usual domain restriction of function υ.

Example 2 (cont’d) The input for the scenario in Example 1 can be
modeled as a stream S = (T, υ) where T = [0, 13] and

υ(2) = {tr(a, p1), bus(c, p1)} υ(11) = {bus(e, p2)}
υ(8) = {tr(d, p2)} υ(t) = ∅ otherwise.

The interpretation υ can be equally represented as the following set:
{2 7→{tr(a, p1),bus(c, p1)}, 8 7→{tr(d, p2)}, 11 7→{bus(e, p2)}} �

2.2 Windows
An essential aspect of stream reasoning is to limit the considered data
to so-called windows, i.e., recent substreams, in order to limit the
amount of data and forget outdated information.

0 1 2 3 4 5 6 7 8 9

×
×
×
•

•
•

×
×
×
•

•
•

×
×
×
•

•
•

` u

• : query times t × : pivot points t′

Figure 2. Time-based window w2,1
3 with range (2, 1) and step size 3

Definition 2 (Window function) A window function maps from a
stream S = (T, υ) and a time point t ∈ T to a window S′ ⊆ S.

The usual time-based window of size ` [3] contains only the tuples
of the last ` time units. We give a generalized definition where the
window can also include the tuples of the future u time points. Based
on query time t and a step size d, we derive a pivot point t′ from which
an interval [t`, tu] is selected by looking backward (resp., forward) `
(resp., u) time units from t′, i.e., t` + ` = t′ and t′ + u = tu.

Definition 3 (Time-based window) Let S = (T, υ) be a stream
with timeline T = [tmin, tmax], let t ∈ T , and let d, `, u ∈ N such
that d ≤ `+ u. The time-based window with range (`, u) and step
size d of S at time t is defined by

w`,u
d (S, t) = (T ′, υ|T ′),

where T ′ = [t`, tu], t` = max{tmin, t
′ − `} with t′ = b t

d
c · d,

and tu = min{t′ + u, tmax}.

For time-based windows that target only the past ` time points, we
abbreviate w`,0

d with w`
d. For windows which target only the future,

we write w+u
d for w0,u

d . If the step size d is omitted, we take d = 1.
Thus, the standard sliding window with range ` is denoted by w`.

The CQL [3] syntax for w`
d is [Range l Slide d] and w`

corresponds to [Range l]. Moreover, the window [Now]
equals [Range 0] and thus corresponds to w0. The entire past
stream, selected by [Range Unbounded] in CQL, is obtained
by wt, where t is the query time. To consider the entire stream (in-
cluding the future), we can use wn, where n = maxT .

Furthermore, we obtain tumbling windows by setting d = `+ u.

Example 3 (cont’d) To formulate the monitoring over the stream S
of Example 2, one can use a time-based window w5 with a range of 5
minutes (to the past) and step size of 1 minute, i.e., the granularity
of T . The results of applying this window function at t = 5, 11 are

w5(S, 5) = ([0, 5], {2 7→ {tr(a, p1), bus(c, p1)}}), and
w5(S, 11) = ([6, 11], {8 7→ {tr(d, p2)}, 11 7→ {bus(e, p2)}}).

Moreover, consider a time-based (tumbling) window with
range (2, 1) and step size 3. For t1 = 5, we have t′1 = b 5

3
c · 3 = 3,

thus T ′
1 = [max{0, 3− 2},min{3 + 1, 13}] = [1, 4]. For t2 = 11,

we get t′2 = 9 and T ′
2 = [7, 10]. The windows for t = 5, 11 are

w2,1
3 (S, 5) = ([1, 4], {2 7→ {tr(a, p1), bus(c, p1)}}), and

w2,1
3 (S, 11) = ([7, 10], {8 7→ {tr(d, p2))}}).

Figure 2 illustrates the progression of this window with time. �

18

The goal of the standard tuple-based window with count n is to
fetch the most recent n tuples. Again, we give a more general def-
inition which may consider future tuples. That is, relative to a time
point t ∈ T = [tmin, tmax], we want to obtain the most recent ` tu-
ples (of the past) and next u tuples in the future. Thus, we must
return the stream restricted to the smallest interval T ′ = [t`, tu] ⊆ T ,
where t` ≤ t ≤ tu, such that S contains ` tuples in the interval [t`, t]
and u tuples in the interval [t+ 1, tu]. In general, we have to discard
tuples arbitrarily at time points t` and tu in order to receive exactly `
and u tuples, respectively. In extreme cases, where fewer than ` tuples
exist in [tmin, t], respectively fewer than u tuples in [t+ 1, tmax], we
return all tuples of the according intervals. Given t ∈ T and the tuple
counts `, u ∈ N, we define the tuple time bounds t` and tu as

t` = max {tmin} ∪ {t′ | tmin ≤ t′ ≤ t ∧ #(S|[t′,t])≥`}, and
tu = min {tmax} ∪ {t′ | t+1 ≤ t′ ≤ tmax ∧ #(S|[t+1,t′])≥u}.

Definition 4 (Tuple-based window) Let S = (T, υ) be a stream
and t ∈ T . Moreover, let `, u ∈ N, T` = [t`, t] and Tu = [t+1, tu],
where t` and tu are the tuple time bounds. The tuple-based window
with counts (`, u) of S at time t is defined by

w#`,u(S, t) = (T ′, υ′|T ′), where T ′ = [t`, tu], and

v′(t′) =





v(t′) for all t′ ∈ T ′ \ {t`, tu}
v(t′) if t′ = t` and #(S|T`) ≤ `
X` if t′ = t` and #(S|T`) > `
v(t′) if t′ = tu and #(S|Tu) ≤ u
Xu if t′ = tu and #(S|Tu) > u

where Xq ⊆ υ(tq), q ∈ {`, u}, such that #(Tq, υ
′|Tq) = q.

Note that the tuple-based window is unique only if for
both q ∈ {`, u}, υ′(tq) = υ(tq), i.e., if all atoms at the endpoints
of the selected interval are retained. There are two natural possibilities
to enforce the uniqueness of a tuple-based window. First, if there
is a total order over all atoms, one can give a deterministic defini-
tion of the sets Xq in Def. 4. Second, one may omit the requirement
that exactly ` tuples of the past, resp. u tuples of the future are con-
tained in the window, but instead demand the substream obtained
by the smallest interval [t`, tu] containing at least ` past and u fu-
ture tuples. Note that this approach would simplify the definition
to w#`,u(S, t) = (T ′, υ|T ′), requiring only to select T ′ = [t`, tu].
We abbreviate the usual tuple-based window operator w#`,0, which
looks only into the past, by w#`. Similarly, w#+u stands for w#0,u.

Example 4 (cont’d) To get the last 3 appearances of trams or
buses from stream S in Example 2 at time point 11, we can
apply a tuple-based window with counts (3, 0). The applica-
tion w#3(S, 11) can lead to two possible windows (T ′, υ′

1)
and (T ′, υ′

2), where T ′ = [2, 11], and

υ′
1 = {2 7→ {tr(a, p1)}, 8 7→ {tr(d, p2)}, 11 7→ {bus(e, p2)}},
υ′
2 = {2 7→ {bus(c, p1)}, 8 7→ {tr(d, p2)}, 11 7→ {bus(e, p2)}}.

The two interpretations differ at time point 2, where either tr(a, p1)
or bus(c, p1) is picked to complete the collection of 3 tuples. �

The CQL syntax for the tuple-based window is [Rows n], which
corresponds to w#n. Note that in CQL a single stream contains tuples
of a fixed schema. In the logic-oriented view, this would translate to
having only one predicate. Thus, applying a tuple-based window on a
stream in our sense would amount to counting tuples across different

streams. To enable counting of different predicates in separation, we
introduce a general form of partition-based windows.

The partition-based window CQL applies a tuple-based window
function on substreams which are determined by a sequence of at-
tributes. The syntax [Partition By A1,...,Ak Rows N]
means that tuples are grouped into substreams by identical val-
ues a1, . . . , ak of attributes A1,. . . , Ak. From each substream, the N
tuples with the largest timestamps are returned.

Here, we have no notion of attributes. Instead, we employ
a general total index function idx : G → I from ground atoms
to a finite index set I ⊆ N, where for each i ∈ I we obtain
from a stream S = (T, υ) a substream idxi(S) = (T, υi) by tak-
ing υi(t) = {a ∈ υ(t) | idx(a) = i}. Moreover, we allow for indi-
vidual tuple counts n(i) = (`i, ui) for each substream Si.

Definition 5 (Partition-based window) Let S = (T, υ) be a
stream, idx : G → I ⊆ N, an index function, and for all i ∈ I
let n(i) = (`i, ui) ∈ N× N and Si = idxi(S). Moreover, let t ∈ T
and w#`i,ui(Si, t) = ([t`i , t

u
i], υ′

i) be the tuple-based window of
counts (`i, ui) of Si at time t. Then, the partition-based window of
counts {(`i, ui)}i∈I of S at time t relative to idx is defined by

w#n
idx (S, t) = (T ′, υ′), where T ′ = [min

i∈I
t`i ,max

i∈I
tui],

and υ′(t′) =
⋃

i∈I υ
′
i(t

′) for all t′ ∈ T ′.

Note that, in contrast to schema-based streaming approaches, we have
multiple kinds of tuples (predicates) in one stream. Whereas other
approaches may use tuple-based windows of different counts on sepa-
rate streams, we can have separate tuple-counts on the corresponding
substreams of a partition-based window on a single stream.

Example 5 (cont’d) Suppose we are interested in the arrival times
of the last 2 trams, but we are not interested in buses. To this end, we
construct a partition-based window w#n

idx as follows. We use index
set I = {1, 2}, and idx(p(X,Y)) = 1 iff p = tr . For the counts in
the tuple-based windows of the substreams, we use n(1) = (2, 0)
and n(2) = (0, 0). We obtain the substreams

S1 = ([2, 13], {2 7→ {tr(a, p1)}, 8 7→ {tr(d, p2)}}), and
S2 = ([2, 13], {2 7→ {bus(c, p1)}, 11 7→ {bus(e, p2)}}),

and the respective tuple-based windows

w#2(S1, 13) = ([2, 13], {2 7→{tr(a, p1)}, 8 7→{tr(d, p2)}}), and
w#0(S2, 13) = ([13, 13], ∅).

Consequently, we get w#n
idx (S, 13) = ([2, 13], υ′), where υ′ is

{2 7→ {tr(a, p1)}, 8 7→ {tr(d, p2)}. �

3 Reasoning over Streams
We are now going to utilize the above definitions of streams and
windows to formalize a semantics for stream reasoning.

3.1 Stream Semantics
Towards rich expressiveness, we provide different means to relate
logical truth to time. Similarly as in modal logic, we will use opera-
tors 2 and 3 to test whether a tuple (atom) or a formula holds all the
time, respectively sometime in a window. Moreover, we use an exact
operator @ to refer to specific time points. To obtain a window of the
stream, we employ window operators �i.

19

Definition 6 (Formulas Fk) The set Fk of formulas (for k modali-
ties) is defined by the grammar

α ::= a | ¬α | α ∧ α | α ∨ α | α→ α | 3α | 2α | @tα | �iα

where a is any atom in A, i ∈ {1, . . . k}, and t ∈ N∪U .

We say a formula α is ground, if all its atoms are ground and for all
occurrences of form @tβ in α it holds that t ∈ N. In the following
semantics definition, we will consider the input stream (urstream)
which remains unchanged, as well as dynamic substreams thereof
which are obtained by (possibly nested) applications of window func-
tions. To this end, we define a stream choice to be a function that
returns a stream based on two input streams.Two straightforward
stream choices are chi, for i ∈ {1, 2}, defined by chi(S1, S2) = Si.
Given a stream choice ch, we obtain for any window function w an
extended window function ŵ by ŵ(S1, S2, t) = w(ch(S1, S2), t) for
all t ∈ N. We say ŵ is the extension of w (due to ch).

Definition 7 (Structure) Let SM = (T, υ) be a stream, I ⊆ N a
finite index set and let Ŵ be a function that maps every i ∈ I to
an extended window function. The triple M = 〈T, υ, Ŵ 〉 is called a
structure and SM is called the urstream of M .

We now define when a ground formula holds in a structure.

Definition 8 (Entailment) Let M = 〈T, υ, Ŵ 〉 be a structure. For
a substream S = (TS, υS) of (T, υ), we define the entailment
relation
 between (M,S, t) and formulas. Let t ∈ T , a ∈ G,
and α, β ∈ Fk be ground formulas and let ŵi = Ŵ(i). Then,

M,S, t
 a iff a ∈ υS(t) ,
M, S, t
 ¬α iff M,S, t 1 α,
M, S, t
 α ∧ β iff M,S, t
 α and M,S, t
 β,
M, S, t
 α ∨ β iff M,S, t
 α or M,S, t
 β,
M, S, t
 α→ β iff M,S, t 1 α or M,S, t
 β,
M, S, t
 3α iff M,S, t′
 α for some t′∈ TS,
M, S, t
 2α iff M,S, t′
 α for all t′∈ TS ,
M, S, t
 @t′α iff M,S, t′
 α and t′∈ TS ,
M, S, t
 �iα iff M,S′, t
 α where S′ = ŵi(SM , S, t).

If M,S, t
 α holds, we say (M,S, t) entails α. Intuitively, M
contains the urstream SM which remains unchanged and S is the
currently considered window. An application of a window operator �i

utilizes the extended window Ŵ(i) which can take into account both
the urstream SM and the current window S to obtain a new view,
as we will discuss later. The operators 3 and 2 are used to evaluate
whether a formula holds at some time point, respectively at all time
points in the timeline TS of S. The operator @t allows to evaluate
whether a formula holds at a specific time point t in TS .

Example 6 (cont’d) Let M = 〈T, υ, Ŵ 〉, where SM = (T, υ) is
the stream S from Example 2 and Ŵ(1) = ŵ5, i.e., the extension
of w5 of Example 3 due to ch2. Consider the following formula:

α = �1(3tr(d, p2) ∧3bus(e, p2))

We verify that M,SM , 11
 α holds. First, the window opera-
tor �1 selects the substream S′ = (TS′ , υ′), where TS′ = [6, 11]
and υ′ = υ|T ′ = {8 7→ {tr(d, p2)}, 11 7→ {bus(e, p2)}}. Next, to
see that (M,S′, 11) entails 3tr(d, p2) ∧3bus(e, p2), we have to
find time points in the timeline TS′ of the current window S′, such
that tr(d, p2) and bus(e, p2) hold, respectively. Indeed, for 8 and 11,
we have M,S1, 8
 tr(d, p2) and M,S1, 11
 bus(e, p2). �

DEFINITION SCOPE

Θ(t) = t time points t ∈ N
Θ(u) = τ(u) time variables u ∈ U
Θ(c) = c constants c ∈ C
Θ(v) = σ(v) variables v ∈ V
Θ(p(t1, . . . , tn)) = predicates p ∈ P and terms ti ∈ T
p(Θ(t1), . . . ,Θ(tn))

Θ(αbβ)) = Θ(α)b Θ(β) b ∈ {∧,∨,→}
Θ(uα) = uΘ(α) u ∈ {¬,3,2} ∪ {�i}i∈N
Θ(@uα) = @t Θ(α) @uα; t = Θ(u)
Θ(α[u]) = Θ(α)[Θ(u)] queries α[u]

Table 1. Definition of substitution Θ based on query assignment (σ, τ)

3.2 Queries
We are now going to define the semantics of queries over streams.

Definition 9 (Query) Let S = (T, υ) be a stream, u ∈ T ∪ U and
let α be a formula. Then α[u] denotes a query (on S). We say a query
is ground, if α is ground and u ∈ T , else non-ground.

For the evaluation of a ground query α[t] we will use M,SM , t
 α.
To define the semantics of non-ground queries, we need the notions
of assignments and substitution. A variable assignment σ is a map-
ping V → C from variables to constants. A time variable assign-
ment τ is a mapping U → N from time variables to time points. The
pair (σ, τ) is called a query assignment. Table 1 defines the substitu-
tion Θ based on query assignment (σ, τ), where α, β ∈ Fk.

Let q = α[u] be a query on S = (T, υ). We say a substitution Θ
grounds q, if Θ(q) is ground, i.e., if Θ maps all variables and time
variables occurring in q. If, in addition, τ(x) ∈ T for every time
variable x ∈ U occurring in q, we say Θ is compatible with q.

Definition 10 (Answer) The answer ?q to a query q = α[t] on S is
defined as follows. If q is ground, then ?q = yes if M,SM , t
 q
holds, and ?q = no otherwise. If q is non-ground, then

?q = {(σ, τ) | Θ is compatible with q and ?Θ(q) = yes}.

That is, the answer to a non-ground query is the set of query substitu-
tions such that the obtained ground queries hold.

Example 7 (cont’d) We formalize the queries of Ex. 1 as follows:

q1 = �1(3tr(X,P) ∧3bus(Y, P))[u]
q2 = �13(tr(X,P) ∧ bus(Y, P))[u]

The query q = �13(tr(a, p1) ∧ bus(c, p1))[t] is ground iff t ∈ N
and ?q = yes iff t ∈ [2, 7]. We evaluate q1 on structure M of Ex. 6:

M,SM , t
 �1(3tr(a, p1) ∧3bus(c, p1)) for all t ∈ [2, 7]
M,SM , t
 �1(3tr(d, p2) ∧3bus(e, p2)) for all t ∈ [11, 13]

Thus, the following set of substitutions is the answer to q1 in M :

?q1 = {({X 7→a, Y 7→c, P 7→p1}, {u 7→ t}) | t ∈ [2, 7]}∪
{({X 7→d, Y 7→e, P 7→p2}, {u 7→ t}) | t ∈ [11, 13]} �

Exact time reference. With the operator @t we can ask whether a
formula holds at a specific time point t. In its non-ground version, we
can utilize this operator for the selection of time points.

Example 8 (cont’d) Let α = tram(X,P) ∧ bus(Y, P). For each
of the queries @Uα[13] and α[U], the time assignments for U in
the answers will map to time points when a tram and a bus arrived

20

simultaneously at the same stop. In both cases, the single answer
is ({X 7→ a, Y 7→ c, P 7→ p1}, {U 7→ 2}). Note that omitting @U

in the first query would give an empty answer, since the subformula α
does not hold at time point 13. �

We observe that the operator @ allows to replay a historic query. At
any time t′ > t, we can ask @tα[t′] to simulate a previous query α[t].
Nested windows. Typically, window functions are used exclusively
to restrict the processing of streams to a recent subset of the input. In
our view, window functions provide a flexible means to reason over
temporally local contexts within larger windows. For these nested
windows we carry both M and S for the entailment relation.

Example 9 (cont’d) Consider the following additional query (q3):
At which stops P , for the last 2 two trams X , did a bus Y arrive
within 3 minutes? To answer (q3) at time point 13, we ask

q3 = �12(tr(X,P)→ �23bus(Y, P))[13].

For �1, we can use the extension ŵ#n
idx of the partition-based win-

dow w#n
idx of Example 5. Applying Ŵ(1) on the stream S = (T, υ)

in the previous examples yields S′ = (T ′, υ′), where T ′ = [2, 13]
and υ′ = {2 7→ {tr(a, p1)}, 8 7→ {tr(d, p2)}}. That is, after apply-
ing this window, the current window S′ no longer contains informa-
tion on buses. Consequently, to check whether a bus came in both
cases within 3 minutes, we must use the urstream SM . Thus, the
second extended window Ŵ(2) = ŵ+3 is the extension of the time-
based window w+3, which looks 3 minutes into the future, due to the
stream choice ch1. Hence, ŵ+3 will create a window based on SM

and not on S′. The two time points in T ′ where a tram appears are 2
and 8, with P matching p1 and p2, respectively. Applying Ŵ(2) there
yields the streams S′′

2 = (T ′′
2 , υ

′′
2) and S′′

8 = (T ′′
8 , υ

′′
8), where

T ′′
2 = [2, 5], υ′′

2 = {2 7→ {tr(a, p1), bus(c, p1)}}, and

T ′′
8 = [8, 11], υ′′

8 = {8 7→ {tr(d, p2)}, 11 7→ {bus(e, p2)}}.

In both streams, we find a time point with an atom bus(Y, pj)
with the same stop pj as the tram. Thus, in both cases
the subformula 3bus(Y, P) is satisfied and so the implica-
tion tr(X,P)→ �23bus(Y, P) holds at every point in time of the
stream selected by �1. Hence, the answer to the query is

?q3 = {{(X 7→ a, Y 7→ c, P 7→ p1}, ∅)},
{(X 7→ d, Y 7→ e, P 7→ p2}, ∅)}}. �

4 Discussion and Related Work
In this section we discuss the relationship of this ongoing work with
existing approaches from different communities.
Modal logic. The presented formalism employs operators 3 and 2 as
in modal logic [6]. Also, the definition of entailment uses a structure
similar to Kripke models for multi-modal logics. However, instead
of static accessibility relations, we use window functions which take
into account not only the worlds (i.e., the time points) but also the
interpretation function. To our best knowledge, window operators
have been considered neither in modal logics nor temporal logics.
CQL. By extending SQL to deal with input streams, CQL queries
are evaluated based on three sets of operators:

(i) Stream-to-relation operators apply window functions to the
input stream to create a mapping from execution times to bags
of valid tuples (w.r.t. the window) without timestamps. This
mapping is called a relation.

(ii) Relation-to-relation operators allow for modification of relations
similarly as in relational algebra, respectively SQL.

(iii) Relation-to-stream operators convert relations to streams by
directly associating the timestamp of the execution with each
tuple (RStream). The other operators IStream/DStream, which
report inserted/deleted tuples, are derived from RStream.

The proposed semantics has means to capture these operators:

(i) The window operators �i keep the timestamps of the selected
atoms, whereas the stream-to-relation operator discards them.
The CQL query for tuple x thus corresponds to a query 3x of
the present setting. A stream in CQL belongs to a fixed schema.
As noted earlier, this corresponds to the special case with only
one predicate. CQL’s partition-based window is a generalization
of the tuple-based window defined there. In turn, the presented
partition-based window generalizes the one of CQL.

(ii) Some relational operators can essentially be captured by logical
connectives, e.g., the join by conjunction. Some operators like
projection will require an extension of the formalism towards
rules. Moreover, we did not consider arithmetic operators and
aggregation functions, which CQL inherits from SQL.

(iii) The answer to a non-ground query α[u] is a set of query assign-
ments (σ, τ). To capture the RStream of CQL, we can group
these assignments by the time variable u.

Example 10 Queries (q1) and (q2) from Example 1 can be expressed
in CQL. We assume that both streams have the attributesX and P , cor-
responding to the first, respectively second argument of predicates tr
and bus . For (q1), we can use:

SELECT * FROM tr [RANGE 5], bus [RANGE 5]
WHERE tr.P = bus.P

On the other hand, (q2) needs two CQL queries.

SELECT * AS tr_bus FROM tr [NOW], bus [NOW]
WHERE tr.P = bus.P
SELECT * FROM tr_bus [RANGE 5]

Here, the first query produces a new stream that contains only simul-
taneous tuples and the second one covers the range of 5 minutes. �

Traditionally, stream reasoning approaches use continuous queries,
i.e., repeated runs of queries with snapshot semantics to deal with
changing information. In this work, we go a step further and en-
able reasoning over streams within the formalism itself by means of
nested windows. One can only mimic this feature with CQL’s snap-
shot semantics when timestamps are part of the schema and explicitly
encoded. Likewise, queries to future time points can be emulated in
this way, as the next example shows.

Example 11 (cont’d) In Example 9, we considered bus arrivals
within 3 minutes after the last 2 trams. In CQL, such a query is
not possible on the assumed schema. However, by adding a third
attribute TS that carries the timestamps to the schema, the following
CQL query yields the same results.

SELECT * FROM tr [ROWS 2],
bus [RANGE UNBOUNDED]

WHERE tr.P = bus.P AND bus.TS - tr.TS <= 3

Note that we need no partition-based window here, since trams and
buses arrive from different input streams. Moreover, we must use the
unbounded window for buses to cover nesting of windows in (q3)
because windows in CQL are applied at query time and not the time
where a tram appearance is notified. �

21

Furthermore, nested CQL queries and aggregation inherited from SQL
are promising to mimic the behavior of operator 2. With according
rewriting, CQL eingines like STREAM [2] could be used to realize
the proposed semantics.

SECRET. In [8] a model called SECRET is proposed to analyze the
execution behavior of different stream processing engines (SPEs) from
a practical point of view. The authors found that even the outcome
of identical, simple queries vary significantly due to the different
underlying processing models. There, the focus is on understanding,
comparing and predicting the behaviour of engines. In contrast, we
want to provide means that allow for a similar analytical study for
the semantics of stream reasoning formalisms and engines. The two
approaches are thus orthogonal and can be used together to compare
stream reasoning engines based on different input feeding modes as
well as different reasoning expressiveness.

Reactive ASP. The most recent work related to expressive stream rea-
soning with rules [11] is based on Reactive ASP [12]. This setting in-
troduces logic programs that extend over time. Such programs have the
following components. Two components P and Q are parametrized
with a natural number t for time points. In addition, a basic compo-
nent B encodes background knowledge that is not time-dependent.
Moreover, sequences of pairs of arbitrary logic programs (Ei, Fj),
called online progression are used. While P and Ei capture accu-
mulated knowledge, Q and Fj are only valid at specific time points.
Compared to reactive ASP, our semantics has no mechanism for ac-
cumulating programs, and we take only streams of atoms/facts, but
no background theories. Therefore, a framework based on idealized
semantics with extension to rules should be able to capture a fragment
of reactive ASP where P and Fj are empty andEi contains only facts.
The foreseeable conversion can be as follows: convert rules in Q by
applying an unbounded window on all body atoms of a rule, using @t

to query the truth value of the atoms at time point t. Then, conclude
the head to be true at t and feed facts from Ei to the input stream S.

StreamLog. Another logic-based approach towards stream reasoning
is StreamLog [17]. It makes use of Datalog and introduces temporal
predicates whose first arguments are timestamps. By introducing se-
quential programs which have syntactical restrictions on temporal
rules, StreamLog defines non-blocking negation (for which Closed
World Assumption can be safely applied) that can be used in recursive
rules in a stream setting. Since sequential programs are locally strat-
ified, they have efficiently computable perfect (i.e., unique) models.
Similar to capturing a fragment of Reactive ASP, we can capture
StreamLog by converting temporal atoms p(t, x1, . . . , xn) to expres-
sions @tp(x1, . . . , xn) and employing safety conditions to rules to
simulate non-blocking negation. Moreover, we plan for having weaker
notions of negation that might block rules but just for a bounded num-
ber of time points to the future.

ETALIS. The ETALIS system [1] aims at adding expressiveness to
Complex Event Processing (CEP). It provides a rule-based language
for pattern matching over event streams with declarative monotonic
semantics. Simultaneous events are not allowed and windows are not
regarded as first-class objects in the semantics, but they are available
at the system implementation level. Tuple-based windows are also not
directly supported. Furthermore, nesting of windows is not possible
within the language, but it can be emulated with multiple rules as in
CQL. On the other hand, ETALIS models complex events with time
intervals and has operators to express temporal relationships between
events.

5 Conclusion
We presented a first step towards a theoretical foundation for (ide-
alistic) semantics of stream reasoning formalisms. Analytical tools
to characterize, study and compare logical aspects of stream engines
have been missing. To fill this gap, we provide a framework to reason
over streaming data with a fine-grained control over relating the truth
of tuples with their occurrences in time. It thus, e.g., allows to capture
various kinds of window applications on data streams. We discussed
the relationship of the proposed formalism with exsisting approaches,
namely CQL, SECRET, Reactive ASP, StreamLog, and ETALIS.

Next steps include extensions of the framework to formally capture
fragments of existing approaches. Towards more advanced reasoning
features like recursion and non-monotonicity, we aim at a rule-based
semantics on top of the presented core. Furthermore, considering inter-
vals of time as references is an interesting research issue. To improve
practicality (as a tool for formal and experimental analysis) one might
also develop an operational characterization of the framework. In a
longer perspective, along the same lines with [7], we aim at a formal-
ism for stream reasoning in distributed settings across heterogeneous
nodes having potentially different logical capabilities.

REFERENCES
[1] Darko Anicic, Sebastian Rudolph, Paul Fodor, and Nenad Stojanovic.,

‘Stream reasoning and complex event processing in ETALIS’, Semantic
Web Journal, (2012).

[2] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,
Itaru Nishizawa, Justin Rosenstein, and Jennifer Widom, ‘Stream: The
stanford stream data manager’, in SIGMOD Conference, p. 665, (2003).

[3] Arvind Arasu, Shivnath Babu, and Jennifer Widom, ‘The CQL continu-
ous query language: semantic foundations and query execution’, VLDB
J., 15(2), 121–142, (2006).

[4] Shivnath Babu and Jennifer Widom, ‘Continuous queries over data
streams’, SIGMOD Record, 3(30), 109–120, (2001).

[5] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri,
Emanuele Della Valle, and Michael Grossniklaus, ‘C-SPARQL:
a continuous query language for rdf data streams’, Int. J. Semantic
Computing, 4(1), 3–25, (2010).

[6] Patrick Blackburn, Maarten de Rijke, and Yde Venema, Modal Logic,
Cambridge University Press, New York, NY, USA, 2001.

[7] Gerhard Brewka, ‘Towards reactive multi-context systems’, in LPNMR,
pp. 1–10, (2013).

[8] Nihal Dindar, Nesime Tatbul, Renée J. Miller, Laura M. Haas, and Irina
Botan, ‘Modeling the execution semantics of stream processing engines
with secret’, VLDB J., 22(4), 421–446, (2013).

[9] Thang M. Do, Seng Wai Loke, and Fei Liu, ‘Answer set programming
for stream reasoning’, in AI, pp. 104–109, (2011).

[10] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tom-
pits, ‘dlvhex: A prover for semantic-web reasoning under the answer-set
semantics’, in Web Intelligence, pp. 1073–1074, (2006).

[11] Martin Gebser, Torsten Grote, Roland Kaminski, Philipp Obermeier,
Orkunt Sabuncu, and Torsten Schaub, ‘Stream reasoning with answer
set programming’, in KR, (2012).

[12] Martin Gebser, Torsten Grote, Roland Kaminski, and Torsten Schaub,
‘Reactive answer set programming’, in LPNMR, pp. 54–66, (2011).

[13] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,
Torsten Schaub, and Sven Thiele, ‘Engineering an incremental asp
solver’, in ICLP, pp. 190–205, (2008).

[14] Danh Le Phuoc, Minh Dao-Tran, Josiane Xavier Parreira, and Manfred
Hauswirth, ‘A native and adaptive approach for unified processing of
linked streams and linked data’, in ISWC (1), pp. 370–388, (2011).

[15] Danh Le Phuoc, Minh Dao-Tran, Minh-Duc Pham, Peter Boncz, Thomas
Eiter, and Michael Fink, ‘Linked stream data processing engines: Facts
and figures’, in ISWC - ET, (2012).

[16] Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter
Fensel, ‘It’s a streaming world! reasoning upon rapidly changing infor-
mation’, IEEE Intelligent Systems, 24, 83–89, (2009).

[17] Carlo Zaniolo, ‘Logical foundations of continuous query languages for
data streams’, in Datalog, pp. 177–189, (2012).

22

Multi-Context Systems for
Reactive Reasoning in Dynamic Environments1

Gerhard Brewka and Stefan Ellmauthaler and Jörg Pührer2

Abstract. We show in this paper how managed multi-context sys-
tems (mMCSs) can be turned into a reactive formalism suitable for
continuous reasoning in dynamic environments. We extend mMCSs
with (abstract) sensors and define the notion of a run of the extended
systems. We then show how typical problems arising in online rea-
soning can be addressed: handling potentially inconsistent sensor in-
put, modeling intelligent forms of forgetting, selective integration of
knowledge, and controlling the reasoning effort spent by contexts,
like setting contexts to an idle mode. We also investigate the com-
plexity of some important related decision problems and discuss dif-
ferent design choices which are given to the knowledge engineer.

1 Introduction

Research in knowledge representation (KR) faces two major prob-
lems. First of all, a large variety of different languages for represent-
ing knowledge - each of them useful for particular types of problems
- has been produced. There are many situations where the integra-
tion of the knowledge represented in diverse formalisms is crucial,
and principled ways of achieving this integration are needed. Sec-
ondly, most of the tools providing reasoning services for KR lan-
guages were developed for offline usage: given a knowledge base
(KB) computation is one-shot, triggered by a user, through a specific
query or a request to compute, say, an answer set. This is the right
thing for specific types of applications where a specific answer to a
particular problem instance is needed at a particular point in time.
However, there are different kinds of applications where a reasoning
system is continuously online and receives information about a par-
ticular system it observes. Consider an assisted living scenario where
people in need of support live in an apartment equipped with vari-
ous sensors, e.g., smoke detectors, cameras, and body sensors mea-
suring relevant body functions (e.g., pulse, blood pressure). A rea-
soning system continuously receives sensor information. The task is
to detect emergencies (health problems, forgotten medication, over-
heating stove,...) and cause adequate reactions (e.g., turning off the
electricity, calling the ambulance, ringing an alarm). The system is
continuously online and has to process a continuous stream of infor-
mation rather than a fixed KB.

This poses new challenges on KR formalisms. Most importantly,
the available information continuously grows. This obviously cannot
go on forever as the KB needs to be kept in a manageable size. We
thus need principled ways of forgetting/disregarding information. In

1 A former version [8] of this paper has been accepted for publication in the
Procs. of ECAI-14. This work has been partially supported by the German
Research Foundation (DFG) under grants BR-1817/7-1 and FOR 1513.

2 Institute of Computer Science, Leipzig University, Germany, email:
{brewka,ellmauthaler,puehrer}@informatik.uni-leipzig.de

the literature one often finds sliding window techniques [13] where
information is kept for a specific, predefined period of time and for-
gotten if it falls out of this time window. We believe this approach is
far too inflexible. What is needed is a dynamic, situation dependent
way of determining whether information needs to be kept or can be
given up. Ideally we would like our online KR system to guarantee
specific response times; although it may be very difficult to come up
with such guarantees, it is certainly necessary to find means to iden-
tify and focus on relevant parts of the available information. More-
over, although the definition of the semantics of the underlying KR
formalism remains essential, we also need to impose procedural as-
pects reflecting the necessary modifications of the KB. This leads
to a new, additional focus on runs of the system, rather than single
evaluations.

Nonmonotonic multi-context systems (MCSs) [5] were explicitly
developed to handle the integration problem. In a nutshell, an MCS
consists of reasoning units - called contexts for historical reasons
[15] - where each unit can be connected with other units via so-called
bridge rules. The collection of bridge rules associated with a context
specifies additional beliefs the context is willing to accept depend-
ing on what is believed by connected contexts. The semantics of the
MCS is then defined in terms of equilibria. Intuitively, an equilibrium
is a collection of belief sets, one for each context, which fit together
in the sense that the beliefs of each context adequately take into ac-
count what the other contexts believe.

The original framework was aimed at modeling the flow of in-
formation among contexts, consequently the addition of information
to a context was the only possible operation on KBs. To capture
more general forms of operations MCSs were later generalized to
so called managed MCSs (mMCSs) [7]. The main goal of this paper
is to demonstrate that this additional functionality makes managed
MCSs particularly well-suited as a basis for handling the mentioned
problems of online reasoning systems as well. The main reason is
that the operations on the knowledge bases allow us to control things
like KB size, handling of inconsistent observations, focus of atten-
tion, and even whether a particular context should be idle for some
time.

However, to turn mMCSs into a reactive online formalism we first
need to extend the framework to accommodate observations. We will
do so by generalizing bridge rules so that they have access not only
to belief sets of other contexts, but also to sensor data. This allows
systems to become reactive, that is, to take information about a dy-
namically changing world into account and to modify themselves to
keep system performance up.

The rest of the paper is organized as follows. We first give the
necessary background on mMCSs. We then extend the framework
to make it suitable for dynamic environments, in particular we show

23

how observations can be accommodated, and we define the notion
of a run of an MCS based on a sequence of observations. The sub-
sequent sections address the following issues: handling time and the
frame problem; dynamic control of KB size; focus of attention; con-
trol of computation (idle contexts). We finally discuss the complexity
of some important decision problems.3

2 Background: Multi-Context Systems
We now give the necessary background on managed MCSs [7] which
provides the basis for our paper. We present a slightly simplified vari-
ant of mMCSs here as this allows us to better highlight the issues rel-
evant for this paper. However, if needed it is rather straightforward
(albeit technically somewhat involved) to extend all our results to the
full version of mMCSs. More specifically we make two restrictions:
1) we assume all contexts have a single logic rather than a logic suite
as in [7]; 2) we assume that management functions are deterministic.

In addition we will slightly rearrange the components of an mMCS
which makes them easier to use for our purposes. In particular, we
will keep bridge rules and knowledge bases separate from their asso-
ciated contexts. The latter will change dynamically during updates,
as we will see later, and it is thus convenient to keep them separate.
Bridge rules will be separated due to technical reasons (i.e., better
presentation of the later introduced notion of a run).

An mMCS builds on an abstract notion of a logic L as a triple
(KBL,BSL,ACCL), where KBL is the set of admissible knowl-
edge bases (KBs) of L, which are sets of KB-elements (“formulas”);
BSL is the set of possible belief sets, whose elements are beliefs;
and ACCL : KBL → 2BSL is a function describing the semantics
of L by assigning to each KB a set of acceptable belief sets.

Definition 1 A context is of the form C = 〈L, ops,mng〉 where

• L is a logic,
• ops is a set of operations,
• mng : 2ops ×KBL → KBL is a management function.

For an indexed context Ci we will write Li, opsi, and mngi to de-
note its components.

Definition 2 Let C = 〈C1, . . . , Cn〉 be a tuple of contexts. A bridge
rule for Ci over C (1 ≤ i ≤ n) is of the form

op←a1, . . . , aj ,not aj+1, . . . , not am, (1)

such that op ∈ opsi and every a` (1 ≤ ` ≤ m) is an atom of form
c:b, where c∈{1, . . . , n}, and b is a belief for Cc, i.e., b ∈ S for
some S ∈ BSLc .

For a bridge rule r, the operation hd(r) = op is the head of r, while
bd(r) = {a1, . . . , aj , not aj+1, . . . , not am} is the body of r.

Definition 3 A managed multi-context system (mMCS) M =
〈C,BR,KB〉 is a triple consisting of

1. a tuple of contexts C = 〈C1, . . . , Cn〉,
2. a tuple BR = 〈br1, . . . , brn〉, where each bri is a set of bridge

rules for Ci over C,
3. a tuple of KBs KB = 〈kb1, . . . , kbn〉 such that kbi ∈ KBLi .

3 The paper is based on preliminary ideas described in the extended abstract
[4] and in [12]. However, the modeling techniques as well as the formaliza-
tion presented here are new. A key difference in this respect is the handling
of sensor data by means of bridge rules.

A belief state S = 〈S1, . . . , Sn〉 for M consists of belief sets
Si ∈ BSLi , 1 ≤ i ≤ n. Given a bridge rule r, an atom c:p ∈ bd(r)
is satisfied by S if p ∈ Sc and a negated atom not c:p ∈ bd(r)
is satisfied by S if p 6∈ Sc. A literal is an atom or a negated atom.
We say that r is applicable wrt. S, denoted by S |= bd(r), if every
literal l ∈ bd(r) is satisfied by S. We use appi(S) = {hd(r) | r ∈
bri ∧ S |= bd(r)} to denote the heads of all applicable bridge rules
of context Ci wrt. S.

The semantics of an mMCS M is then defined in terms of equi-
libria, where an equilibrium is a belief state S = 〈S1, . . . , Sn〉
satisfying the following condition: the belief set chosen for each
context must be acceptable for the KBs obtained by applying the
management function to the heads of applicable bridge rules and
the KB associated with the context. More formally, for all contexts
Ci = 〈Li, opsi,mngi〉: let Si be the belief set chosen for Ci. Then
S is an equilibrium if, for 1 ≤ i ≤ n,

Si ∈ ACCi(kb
′) for kb′ = mngi(appi(S), kbi).

Management functions allow us to model all sorts of modifications of
a context’s KB and thus make mMCSs a powerful tool for describing
the influence contexts can have on each other.

3 Reactive Multi-Context Systems
To make an mMCS M suitable for reactive reasoning in dynamic
environments, we have to accomplish two tasks:

1. we must provide means for the MCS to obtain information pro-
vided by sensors, and

2. we have to formally describe the behavior of the MCS over time.

Let us first show how sensors can be modeled abstractly. We as-
sume that a sensor Π is a device which is able to provide new in-
formation in a given language LΠ specific to the sensor. From an
abstract point of view, we can identify a sensor with its observation
language and a current sensor reading, that is, Π = 〈LΠ, π〉 where
π ⊆ LΠ. Given a tuple of sensors Π = 〈Π1, . . . ,Πk〉, an observa-
tion Obs for Π (Π-observation for short) consists of a sensor reading
for each sensor, that is, Obs = 〈π1, . . . , πk〉 where for 1 ≤ i ≤ k,
πi ⊆ LΠi .

Each context must have access to its relevant sensors. Contexts
already have means to obtain information from outside, namely the
bridge rules. This suggests that the simplest way to integrate sensors
is via an extension of the bridge rules: we will assume that bridge
rules in their bodies can not only refer to contexts, but also to sensors.

Definition 4 A reactive multi-context system (rMCS) over sensors
Π = 〈Π1, . . . ,Πk〉 is a tuple M = 〈C,BR,KB〉, as in Def. 3 except
that the atoms a` (1 ≤ ` ≤ m) of bridge rules in BR for context Ci

of form (1) can either be a context atom of form c:b as in Def. 2, or a
sensor atom of form o@s, where s is an index determining a sensor
(1 ≤ s ≤ k) and o ∈ LΠs is a piece of sensor data.

The applicability of bridge rules now also depends on an observation:

Definition 5 Let Π be a tuple of sensors and Obs = 〈π1, . . . , πk〉 a
Π-observation. A sensor atom o@s is satisfied by Obs if o ∈ πs; a
literal not o@s is satisfied by Obs if o 6∈ πs.

Let M = 〈C,BR,KB〉 be an rMCS with sensors Π and S a belief
state forM . A bridge rule r in BR is applicable wrt. S andObs, sym-
bolically S |=Obs bd(r), if every context literal in bd(r) is satisfied
by S and every sensor literal in bd(r) is satisfied by Obs.

24

Instead of appi(S) we use appi(S, Obs) = {hd(r) | r ∈ bri ∧
S |=Obs bd(r)} to define an equilibrium of an rMCS in a similar
way as for an mMCS:

Definition 6 LetM = 〈C,BR,KB〉 be an rMCS with sensors Π and
Obs a Π-observation. A belief state S = 〈S1, . . . , Sn〉 for M is an
equilibrium of M under Obs if, for 1 ≤ i ≤ n,

Si ∈ ACCi(mngi(appi(S, Obs), kbi)).

Definition 7 Let M = 〈C,BR,KB〉 be an rMCS with sensors Π,
Obs a Π-observation, and S = 〈S1, . . . , Sn〉 an equilibrium of M
under Obs. The tuple of KBs generated by S is defined as KBS =
〈mng1(app1(S, Obs), kb1), . . . ,mngn(appn(S, Obs), kbn)〉. The
pair 〈S,KBS〉 is called full equilibrium of M under Obs.

We now introduce the notion of a run of an rMCS induced by a se-
quence of observations:

Definition 8 Let M = 〈C,BR,KB〉 be an rMCS with sensors
Π and O = (Obs0, Obs1, . . .) a sequence of Π-observations.
A run of M induced by O is a sequence of pairs R =
(〈S0,KB0〉, 〈S1,KB1〉, . . .) such that

• 〈S0,KB0〉 is a full equilibrium of M under Obs0,
• for 〈Si,KBi〉 with i > 0, 〈Si,KBi〉 is a full equilibrium of
〈C,BR,KBi−1〉 under Obsi.

To illustrate the notion of a run, let’s discuss a simple example. We
want to model a clock which allows other contexts to add time stamps
to sensor information they receive. We consider two options. We will
first show how a clock can be realized which generates time inter-
nally by increasing a counter whenever a new equilibrium is com-
puted. We later discuss a clock based on a sensor having access to
“objective” time. In both cases we use integers as time stamps.

Example 1 Consider a contextCc whose KBs (and belief sets) are of
the form {now(t)} for some integer t. Let kb0 = {now(0)}. Assume
the single bridge rule of the context is incr←, which intuitively says
time should be incremented whenever an equilibrium is computed.
The management function is thus defined as

mngc({incr}, {now(t)}) = {now(t + 1)}

for each t. Since the computation of the (full) equilibrium is inde-
pendent of any other contexts and observations, the context just in-
crements its current time whenever a new equilibrium is computed.
Each run of an rMCS with context Cc will thus contain for Cc the
sequence of belief sets {now(1)}, {now(2)}, {now(3)}, The
example illustrates that the system may evolve over time even if there
is no observation made at all.

It is illustrative to compare this with a context Cc′ which is like
the one we discussed except for the bridge rules which now are the
instances of the schema

set(now(T + 1))← c′:now(T).

The management function correspondingly becomes

mngc′({set(now(t + 1))}, {now(t)}) = {now(t + 1)}

for all t. Note that in this case no equilibrium exists! The reason
for this is that by replacing now(0) with now(1) the precondition
for the rule sanctioning this operation goes away. Special care thus
needs to be taken when defining the operations.

In the rest of the paper we will often use an alternative approach
where “objective” time is entered into the system by a particular sen-
sor Πt. In this case each update of the system makes time available
to each context via the current sensor reading of Πt.

In Example 1 we already used a bridge rule schema, that is, a
bridge rule where some of the parts are described by parameters (de-
noted by uppercase letters). We admit such schemata to allow for
more compact representations. A bridge rule schema is just a con-
venient abbreviation for the set of its ground instances. The ground
instances are obtained by replacing parameters by adequate ground
terms. We will admit parameters for integers representing time, but
also for formulas and even contexts. In most cases it will be clear
from the discussion what the ground instances are, in other cases we
will define them explicitly. We will also admit some kind of basic
arithmetic in the bridge rules and assume the operations to be han-
dled by grounding, as is usual, say, in answer set programming. For
instance, the bridge rule schema

add(p(T + 1))← c:p(T), not c:¬p(T + 1)

which we will use to handle the frame problem in the next sec-
tion has ground instances add(p(1)) ← c:p(0), not c:¬p(1),
add(p(2))← c:p(1), not c:¬p(2), etc.

Although in principle parameters for integers lead to an infinite set
of ground instances, in our applications only ground instances up to
the current time (or current time plus a small constant, see Sect. 6)
are needed, so the instantiations of time points remain finite.

In the upcoming sections we describe different generic modeling
techniques for rMCSs. For concrete applications, these techniques
can be refined and tailored towards the specific needs of the prob-
lem domain at hand. To demonstrate this aspect, we provide a more
specific example from an assisted living application.

Example 2 Although Bob suffers from dementia, he is able to live
in his own apartment as it is equipped with an assisted living system
that we model by means of an rMCS. Assume Bob starts to prepare
his meal. He leaves the kitchen to go to the bathroom. After that,
he forgets he has been cooking, goes to bed and falls asleep. The
rMCS should be able to recognize a potential emergency based on
the data of different sensors in the flat that monitor, e.g., the state of
the kitchen equipment and track Bob’s position.

Our rMCS M has three contexts C = 〈Ckt, Chu, Cig〉 and sen-
sors Π = 〈Πpow,Πtmp,Πpos〉. Ckt is the kitchen equipment con-
text that monitors Bob’s stove. Its formulas and beliefs are atoms
from atkt = {pw(on), pw(off), tm(cold), tm(hot)} representing
the stove’s power status (on/off) and a qualitative value for its tem-
perature (cold/hot). The logic Lkt = 〈2atkt , 2atkt , ACCid〉 of Ckt

has a very simple semantics ACCid in which every knowledge base
kb has only one accepted belief set coinciding with the formulas of
kb, i.e., ACCid(kb) = {kb}. The bridge rules for Ckt over C are

setPower(P)←switch(P)@pow.
setTemp(cold)←T@tmp, T ≤ 45.
setTemp(hot)←T@tmp, 45 < T.

that react to switching the stove on or off, registered by sensor Πpow,
respectively read numerical temperature values from sensor Πtmp

and classify the temperature value as cold or hot. The management

25

function mngkt(app, kb) =

{pw(on) | setPower(on) ∈ app∨
(pw(on) ∈ kb ∧ setPower(off) 6∈ app)}∪

{pw(off) |setPower(on) 6∈ app∧
(pw(on) 6∈ kb ∨ setPower(off) ∈ app)}∪

{tm(t) | setTemp(t) ∈ app}

ensures that the stove is considered on when it is switched on or
when it is not being switched off and already considered on in the old
knowledge base kb. Otherwise, the KB constructed by the manage-
ment function contains the atom pw(off). Context Chu keeps track
of Bob’s position. The language of sensor Πpos is given by LΠpos =
{enters(kitchen), enters(bathroom), enters(bedroom)} and non-
empty sensor readings of Πpos signal when Bob has changed rooms.
The semantics of Chu is also ACCid and its bridge rules are given
by the schema

setPos(P)← enters(P)@pos.

The management function writes Bob’s new position into the KB
whenever he changes rooms and keeps the previous position, oth-
erwise. Cig = 〈Lig, opsi,mngig〉 is the context for detecting emer-
gencies. It is implemented as an answer-set program, hence the ac-
ceptable belief sets of Lig are the answer sets of its KBs. The bridge
rules of Cig do not refer to sensor data but query other contexts:

extVal(oven(P ,T))← kt:pw(P), kt:tm(T).
extVal(humanPos(P))← hu:pos(P).

The answer-set program kbig is given by the rule

emergency← oven(on, hot), not humanPos(kitchen).

The management function of Cig that adds information from the
bridge rules temporarily as input facts to the context’s KB is given
by mngig(app, kb) =

(kb\({oven(P ,T)←| P ∈ {on, off }, T ∈ {cold , hot}}∪
{humanPos(R)←| enters(R) ∈ LΠpos}))∪

{oven(p, t)←| extVal(oven(p, t)) ∈ app}∪
{humanPos(r)←| extVal(humanPos(r)) ∈ app}.

Consider the sequence O = (Obs0, Obs1) of Π-observations with
Obsi = 〈πi

pow, π
i
tmp, π

i
pos〉 for 0 ≤ i ≤ 1, π0

pow = {switch(on)},
π0
tmp = {16}, π1

tmp = {81}, π0
pos = {enters(kitchen)}, π1

pos =
{enters(bathroom)}, and πi

s = ∅ for all other πi
s. Then, 〈S0,KB0〉

is a full equilibrium of M under Obs0, where

S0 = 〈{pw(on), tm(cold)}, {pos(kitchen)},
{oven(on, cold), humanPos(kitchen)}〉.

and KB0 equals S0 except for the last component which is
kbig ∪ {oven(on, cold) ←, humanPos(kitchen) ←}. Moreover,
(〈S0,KB0〉, 〈S1,KB1〉) is a run of M induced by O, where

S1 = 〈{pw(on), tm(hot)}, {pos(bathroom)},
{oven(on, hot), humanPos(bathroom), emergency}〉.

4 Handling sensor data
In this section we discuss how to model an rMCS where possibly
inconsistent sensor data can be integrated into a context Cj . To this

end, we add a time tag to the sensor information and base our treat-
ment of time on the second option discussed in the last section, that
is, we assume a specific time sensor Πt that yields a reading πt of the
actual time of the form now(t) where t is an integer.

Let Πj1 , . . . ,Πjm be the sensors which provide relevant informa-
tion for Cj in addition to Πt. Then Cj will have bridge rules of the
form

add(P,T , jr)← P@jr, now(T)@t

where the operation add is meant to add new, time tagged informa-
tion to the context.

We assume the readings of a single sensor at a particular time point
to be consistent. However, it is a common problem that the readings
of different sensors may be inconsistent with each other wrt. some
context-dependent notion of inconsistency. To handle this we foresee
a management function mngj that operates based on a total prefer-
ence ranking of the available sensors. The third argument of the add
operation provides information about the source of sensor informa-
tion and thus a way of imposing preferences on the information to
be added. Without loss of generality assume j1 > . . . > jm, that is,
sensor Πj1 has highest priority.

Now let add(S) be the set of add-operations in the heads of bridge
rules active in belief state S. We define

Addj1(S) = {(p, t) | add(p, t , j1) ∈ add(S)}

and for 1 < i ≤ m we let Addji(S) = Addji−1(S)∪

{(p, t) | add(p, t , ji) ∈ add(S), (p, t) consistent with Addji−1(S)}.

Finally, we define mngj(add(S), kb) = kb ∪Addjm(S).
This shows how the management function can solve conflicts

among inconsistent sensor readings based on preferences among the
sensors. Of course, many more strategies of integrating inconsistent
sensor data can be thought of which we are not going to discuss in
the paper. Please also note that the bridge rules do not necessarily
have to pass on sensor information as is to the context. They may as
well provide the context with some abstraction of the actual readings.
For instance, the sensor temperature information temp = 55 may be
transformed into qualitative information by a rule schema like

add(temp = high,T , jr)←temp = x@jr, 45 ≤ x ≤ 65,
now(T)@t.

We next present a way to address the frame problem using bridge
rules when sensors are not guaranteed to provide complete informa-
tion about the state of the environment in each step. In this case we
want to assume, at least for some of the atoms or literals observed at
time T − 1 which we call persistent, that they also hold at time T .

Assume p is some persistent observable property. Persistence of p
is achieved by the following bridge rule schema:

add(p(T))← now(T)@t, j:p(T − 1),not j:¬p(T).

Please note that in order to avoid non-existence of equilibria as
discussed at the end of Sect. 3 the use of this rule schema for the
frame problem presupposes that information about p valid at time
T − 1 remains available and is not deleted by any other bridge rule.

5 Selective forgetting and data retention
To illustrate our approach we discuss in this section a context Cd

which can be used for emergency detection in dynamic environ-
ments. Assume there are m potential emergencies E1, . . . , Em we

26

want the context to handle. The role of Cd is to check, based on the
observations made, whether one or more of the emergencies Ei are
suspected or confirmed. Based on information about potential emer-
gencies Cd adjusts the time span observations are kept. This is the
basis for intelligent forgetting based on dynamic windows.

We do not make any assumption about how Cd works internally
apart from the following:

• Cd may signal that emergencyEi is suspected (susp(Ei)) or con-
firmed (conf(Ei)).

• Cd has information about default, respectively actual window
sizes for different observations (def.win(p, x), win(p, x)), and

• about the number of time steps observations are relevant for par-
ticular emergencies (rel(p, e, x)).

Given facts of the form mentioned above, here is a possible collection
of bridge rules for the task. The operation set sets the window size
to a new value, deleting the old one. To signal an alarm, information
is added to the context KB via the operation alarm.

set(win(P ,X))← d:def.win(P ,X), not d:susp(E)
set(win(P ,Y))← d:rel(P ,E ,Y), d:susp(E)
alarm(E) ← d:conf(E)

Finally, we have to make sure deletions of observations are per-
formed in accordance with the determined window sizes:

del(p(T ′))← now(T)@t, d:win(P ,Z), T ′ < T − Z.

The management function just performs additions and deletions
on the context KB. Since additions always are tagged with the cur-
rent time, whereas deletions always refer to an earlier time, there can
never be a conflict.

We have so far described a form of focusing where a time window
is extended based on a specific suspected event. The next example
shows a different form of focusing where specific information is gen-
erated and kept only during there is a potential danger in a particular
room.

Example 3 Continuing Example 2 we show how contextCig can fo-
cus on specific rooms if there is a potential emergency. For the kitchen
there is a threat if the stove is on, and it then becomes important to
track whether someone is in the kitchen. Assume Cig has a potential
belief pw(on,T) expressing the stove is on since T . Focusing on the
kitchen can be modeled by following the ASP-rule in Cig’s KB:

focus(kitchen)← pw(on,T).

In addition we will need a bridge rule, which keeps track whether
Bob is absent from a room in case that room is in the current focus:

add(absence(R,T))←now(T)@t, ig:focus(R),

not ig:humanpos(R),

not ig:absence(R,T ′), T ′ < T.

as well as a bridge rule to forget the absence in a room if it is no
longer necessary. There the delAll operator removes all occurrences
of absence with respect to a given roomR from the KB of the context.

delAll(absence,R)← ig:humanpos(R).

delAll(absence,R)← not ig:focus(R).

With those modifications it is possible to generate an alert if Bob was
too long away from the kitchen although the stove is active.

6 Control of computation
In this section we show how it is possible - at least to some extent -
to control the effort spent on the computation of particular contexts.
We introduce a specific control context C0 which decides whether a
context it controls should be idle for some time. An idle context just
buffers sensor data it receives, but does not use the data for any other
computations.

Let’s illustrate this continuing the discussion of Sect. 5. Assume
there are k different contexts for detecting potential emergencies as
described earlier. The rMCS we are going to discuss is built on an
architecture where each detector context Ci, 1 ≤ i ≤ k is connected
via bridge rules with the control context. C0 receives information
about suspected emergencies and decides, based on this information,
whether it is safe to let a context be idle for some time.

We now address the question what it means for a detector con-
text to be idle. A detector context Ci receives relevant observations
to reason whether an emergency is suspected or confirmed. In case
Ci is idle, we cannot simply forget about new sensor information as
it may become relevant later on, but we can buffer it so that it does
not have an effect on the computation of a belief set, besides the fact
that a buffered information shows up as an additional atom in the be-
lief set which does not appear anywhere in the context’s background
knowledge.

To achieve this we have to modify Ci’s original bridge rules by
adding, to the body of each rule, the context literal not 0:idle(i).
This means that the bridge rules behave exactly as before whenever
the control context does not decide to let Ci be idle.

For the case where Ci is idle, i.e. where the belief set of C0 con-
tains idle(i), we just make sure that observations are buffered. This
means that for each rule of the form

add(P,T , jr)← P@jr, now(T)@t

in the original set of bridge rules we add

bf(P,T , jr)← P@jr, now(T)@t, 0:idle(I).

The operation bf just adds the atom bf(p, t , jr) to the context (we as-
sume here that the language of the context contains constructs of this
form). As mentioned above, this information is not used anywhere in
the rest of the context’s KB, it just sits there for later use.

The only missing piece is a bridge rule bringing back information
from the buffer when the context is no longer idle. This can be done
using the bridge rule empty.buffer ← not 0:idle(I). Whenever the
management function has to execute this operation, it takes all infor-
mation out of the buffer, checks whether it is still within the relevant
time window, and if this is the case adds it to the KB, handling po-
tential inconsistencies the way discussed in Sect. 4.

The control context uses formulas of the form idle(i , t) to express
context i is idle until time t. We intend here to give a proof of con-
cept, not a sophisticated control method. For this reason we simply
assume the control context lets a detector context be idle for a spe-
cific constant time span c whenever the detector does not suspect an
emergency. This is achieved by the following bridge rule schemata:

add(suspicion(K)) ←K:susp(E)
add(idle(K ,T + c)) ← now(T)@t, not 0:suspicion(K),

not 0:idle(K ,T ′), T ′ < T + c

Provided information of the form idle(i , t) is kept until the ac-
tual time is t + 2, the last 2 conditions in the second rule schema
guarantee that after being idle for period c the context must check at

27

least once whether some emergency is suspected. To avoid a context
staying idle forever, we assume the management function deletes in-
formation of this form whenever t is smaller than the current time
minus 1. One more rule schema to make sure information about idle
contexts is available in the form used by detector contexts:

add(idle(K))← now(T)@t, 0:idle(K ,T ′), T ≤ T ′.

7 Complexity
We want to analyze the complexity of queries on runs of rMCSs. For
simplicity we do not consider parametrized bridge rules here, and
assume that all knowledge bases in rMCSs are finite and all manage-
ment functions can be evaluated in polynomial time.

Definition 9 The problem Q∃, respectively Q∀, is deciding whether
for a given rMCSM with sensors Π, a contextCi ofM , a belief b for
Ci, and a finite sequence of Π-observations O it holds that b ∈ Si

for some Sj = 〈S1, . . . , Sn〉 (0 ≤ j ≤ n) for some run, respectively
all runs, R = (〈S0,KB0〉, . . . , 〈Sm,KBm〉) of M induced by O.

As the complexity of an rMCS depends on that of its individual
contexts we introduce the notion of context complexity along the
lines of Eiter et al. [10]. To do so, we need to focus on relevant
parts of belief sets by means of projection. Intuitively, among all
beliefs, we only need to consider belief b that we want to query
and beliefs that contribute to the application of bridge rules for de-
ciding Q∃ and Q∀. Given M , Π, Ci, and b as in Definition 9,
the set of relevant beliefs for a context Cj of M is given by
RBj(M, i:b) = {b′ | r ∈ brj , h:b′ ∈ bd(r) ∨ not h:b′ ∈
bd(r)} ∪ {b | i = j}. A projected belief state for M and i:b is a
tuple Si:b

|M = 〈S1 ∩RB1(M, i:b), . . . , Sn ∩RBn(M, i:b)〉 where
S = 〈S1, . . . , Sn〉 is a belief state for M . The context complexity of
Cj in M wrt. i:b for a fixed Π-observation Obs is the complexity of
deciding whether for a given projected belief state S for M and i:b,
there is some belief state S′ = 〈S′1, . . . , S′n〉 for M with S′i:b|M = S
and S′j ∈ ACCj(mngj(appj(S, Obs), kbj)) for all 1 ≤ j ≤ n.
The system’s context complexity CC(M, i:b) is a (smallest) upper
bound for the context complexity classes of its contexts. Our com-
plexity results are summarized in Table 1.

Table 1. Complexity of checking Q∃ and Q∀ (membership, completeness
holds given hardness for CC(M, i:b)).

CC(M, i:b) Q∃ Q∀

P NP coNP
ΣP

i (i ≥ 2) ΣP
i ΠP

i
PSPACE PSPACE PSPACE

Membership for Q∃: a non-deterministic Turing machine can guess
a projected belief state Sj = 〈S1, . . . , Sn〉 for all m observations in
O in polynomial time. Then, iteratively for each of the consecutive
observations obsj , first the context problem can be solved polyno-
mially or using an oracle (the guess of Sj and the oracle guess can
be combined which explains that we stay on the same complexity
level for higher context complexity). If the answer is ’yes’, Sj is a
projected equilibrium. We can check whether b ∈ Si, compute the
updated knowledge bases and continue the iteration until reaching
the last observation. The argument is similar for the co-problem of
Q∀. Hardness: holds by a reduction from deciding equilibrium exis-
tence for an MCS when CC(M, i:b) is polynomial and by a reduction
from the context complexity problem for the other results.

Note that Q∃ and Q∀ are undecidable if we allow for infinite ob-
servations. The reason is that rMCSs are expressive enough (even
with very simple context logics) to simulate a Turing machine such
that deciding Q∃ or Q∀ for infinite runs solves the halting problem.

8 Discussion

In this paper we introduced reactive MCSs, an extension of managed
MCSs for online reasoning, and showed how they allow us to han-
dle typical problems arising in this area. Although we restricted our
discussion to deterministic management functions, two sources of
non-determinism can be spotted by the attentive reader. On the one
hand, we allow for semantics that return multiple belief sets for the
same knowledge base, and, on the other hand, non-determinism can
be introduced through bridge rules.

The simplest example is guessing via positive support cycles, e.g.,
using bridge rules like add(a)← c:a that allow (under the stan-
dard interpretation of add) for belief sets with and without formula a.
Multiple equilibria may lead to an exponential number of runs. In
practice, non-determinism will have to be restricted. A simple yet
practical solution is to focus on a single run, disregarding alternative
equilibria. Here, one might ask which is the best full equilibrium to
proceed with. In this respect, it makes sense to differentiate between
non-deterministic contexts and non-determinism due to bridge rules.
In the first case, it is reasonable to adopt the point of view of the
answer-set programming (ASP) paradigm, i.e., the knowledge bases
of a context can be seen as an encoding of a problem such that the
resulting belief sets correspond to the problem solutions. Hence, as
every belief set is a solution it does not matter which one to choose.
Thus, if the problem to be solved is an optimisation problem that has
better and worse solutions, this could be handled by choosing a con-
text formalism able to express preferences so that the semantics only
returns sufficiently good solutions. For preferences between equilib-
ria that depend on the belief sets of multiple contexts, one cannot
rely on intra-context preference resolution. Here, we refer the reader
to preference functions as proposed by Ellmauthaler [12]. One might
also adopt language constructs for expressing preferences in ASP
such as optimization statements [14] or weak constraints [9]. Essen-
tially, these assign a quality measure to an equilibrium. With such
additional quality measures at hand, the best equilibrium can be cho-
sen for the run.

As to related work, there is quite some literature on MCSs by now,
for an overview see [6]. Recently an interesting approach to belief
change in MCSs has been proposed [18]. Other related work con-
cerns stream reasoning in ASP [13] and in databases: a continuous
version of SPARQL [3] exists, and logical considerations about con-
tinuous query languages [19] were investigated. Kowalski’s logic-
based framework for computing [17] is an approach which utilizes
first order logic and concepts of the situation- and event-calculus in
response to observations. Updates on knowledge-bases, based upon
the outcome of a given semantics where also facilitated for other for-
malisms, like logic programming in general. There the iterative ap-
proaches of EPI [11] and EVOLP [1] are the most prominent. Note
that none of these related approaches combines a solution to both
knowledge integration and online reasoning, as we do.

The idea of updates to the knowledge-base was also formalised for
database systems [2].

For a related alternative approach using an operator for directly
manipulating KBs without contributing to the current equilibrium,
we refer to the work by Gonçalves, Knorr, and Leite [16].

28

REFERENCES
[1] José Júlio Alferes, Antonio Brogi, João Alexandre Leite, and Luı́s Mo-

niz Pereira, ‘Evolving logic programs’, in 8th European Conference on
Logics in Artificial Intelligence (JELIA 2002), eds., Sergio Flesca, Ser-
gio Greco, Nicola Leone, and Giovambattista Ianni, volume 2424 of
Lecture Notes in Computer Science, pp. 50–61. Springer, (September
2002).

[2] Chitta Baral, Jorge Lobo, and Goce Trajcevski, ‘Formal characteri-
zations of active databases: Part ii’, in 5th International Conference
on Deductive and Object-Oriented Databases (DOOD 1997), eds.,
François Bry, Raghu Ramakrishnan, and Kotagiri Ramamohanarao,
volume 1341 of Lecture Notes in Computer Science, pp. 247–264.
Springer, (1997).

[3] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus,
‘C-SPARQL: a continuous query language for RDF data streams’, In-
ternational Journalof Semantic Computing, 4(1), 3–25, (2010).

[4] G. Brewka, ‘Towards reactive multi-context systems’, in 12th Interna-
tional Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR 2013), pp. 1–10, (2013).

[5] G. Brewka and T. Eiter, ‘Equilibria in heterogeneous nonmonotonic
multi-context systems’, in AAAI’07, pp. 385–390, (2007).

[6] G. Brewka, T. Eiter, and M. Fink, ‘Nonmonotonic multi-context sys-
tems: A flexible approach for integrating heterogeneous knowledge
sources’, in Logic Programming, Knowledge Representation, and Non-
monotonic Reasoning, 233–258, Springer, (2011).

[7] G. Brewka, T. Eiter, M. Fink, and A. Weinzierl, ‘Managed multi-context
systems’, in IJCAI’11, pp. 786–791, (2011).

[8] Gerhard Brewka, Stefan Ellmauthaler, and Jörg Pührer, ‘Multi-context
systems for reactive reasoning in dynamic environments’, in 21st Eu-
ropean Conference on Artificial Intelligence (ECAI 2014), (2014). To
appear.

[9] F. Buccafurri, N. Leone, and P. Rullo, ‘Strong and weak constraints
in disjunctive datalog.’, in 4th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR 1997), pp. 2–17,
(1997).

[10] T. Eiter, M. Fink, P. Schüller, and A. Weinzierl, ‘Finding explanations
of inconsistency in multi-context systems’, in Proc. KR’10, (2010).

[11] Thomas Eiter, Michael Fink, Guiliana Sabbatini, and Hans Tompits,
‘A framework for declarative update specifications in logic programs’,
in Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI 2001), ed., Bernhard Nebel, pp. 649–654. Morgan
Kaufmann, (2001).

[12] S. Ellmauthaler, ‘Generalizing multi-context systems for reactive
stream reasoning applications’, in Proceedings of the 2013 Impe-
rial College Computing Student Workshop (ICCSW 2013), pp. 17–24,
(2013).

[13] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and
T. Schaub, ‘Stream reasoning with answer set programming: Prelim-
inary report’, in Proceedings of the 13th International Conference on
the Principles of Knowledge Representation and Reasoning (KR 2012),
(2012).

[14] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele, A users guide to gringo, clasp, clingo, and iclingo, Potassco
Team, 2010.

[15] F. Giunchiglia and L. Serafini, ‘Multilanguage hierarchical logics or:
How we can do without modal logics’, Artif. Intell., 65(1), 29–70,
(1994).

[16] R. Gonçalves, M. Knorr, and J. Leite, ‘Evolving multi-context systems’,
in 21st European Conference on Artificial Intelligence (ECAI 2014),
(2014). To appear.

[17] R. A. Kowalski and F. Sadri, ‘Towards a logic-based unifying frame-
work for computing’, CoRR, abs/1301.6905, (2013).

[18] Y. Wang, Z. Zhuang, and K. Wang, ‘Belief change in nonmonotonic
multi-context systems’, in 12th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR 2013), pp. 543–555,
(2013).

[19] C. Zaniolo, ‘Logical foundations of continuous query languages for
data streams’, in 2nd International Workshop on Datalog in Academia
and Industry (Datalog 2.0), pp. 177–189, (2012).

29

Asynchronous Multi-Context Systems1

Stefan Ellmauthaler and Jörg Pührer2

Abstract. In this work, we present asynchronous multi-context sys-
tems (aMCSs), which provide a framework for loosely coupling dif-
ferent knowledge representation formalisms that allows for online
reasoning in a dynamic environment. Systems of this kind may in-
teract with the outside world via input and output streams and may
therefore react to a continuous flow of external information. In con-
trast to recent proposals, contexts in an aMCS communicate with
each other in an asynchronous way which fits the needs of many
application domains and is beneficial for scalability. The federal se-
mantics of aMCSs renders our framework an integration approach
rather than a knowledge representation formalism itself. We illustrate
the introduced concepts by means of an example scenario dealing
with rescue services. In addition, we compare aMCSs to reactive
multi-context systems and describe how to simulate the latter with
our novel approach.

1 Introduction

Research in the field of knowledge representation (KR) has originated
a plethora of different languages and formats. Based on these formal
concepts a wealth of tools has emerged (e.g., ontologies, triple-stores,
modal logics, temporal logics, nonmonotonic logics, logic programs
under nonmonotonic answer set semantics, . . .). In a “connected world”
it is desirable not to spread out information over different applications
but to have it available for every application if need be. Expressing all
the knowledge usually represented in specifically tailored languages
in a universal language would be too hard to achieve from the point of
view of complexity as well as the troubles arising from the translation
of the representations. Instead, a framework seems desirable that
integrates multiple existing formalisms in order to represent every
piece of knowledge in the language that is most appropriate for it.

Another aspect that has received little attention in the development
of many KR formalisms is that in a variety of applications, knowledge
is provided in a constant flow of information and it is desired to reason
over this knowledge in a continuous manner. Many formalisms are
conceptually one-shot formalisms: given a knowledge base, the user
triggers the computation of a result (e.g., the answer to a query). In
this paper we aim at using KR formalisms in an online fashion as it
has been done in recent works, e.g., on stream data processing and
querying [11, 10], stream reasoning with answer set programming [7],
and forgetting [9, 5].

To address the demand for an integration of heterogeneous knowl-
edge representation formalisms together with the awareness of a
continuous flow of knowledge over time, reactive multi-context sys-
tems (rMCSs) [4] and evolving multi-context systems (eMCSs) [8]

1 This work has been partially supported by the German Research Foundation
(DFG) under grants BR-1817/7-1 and FOR 1513.

2 Institute of Computer Science, Leipzig University, Germany, email:
{ellmauthaler,puehrer}@informatik.uni-leipzig.de

where proposed. Both frameworks are based on the ideas of managed
multi-context systems (mMCSs) [3] which combine multiple contexts
which can be seen as representations of different formalisms. The
semantics of rMCSs and eMCSs are based on the notion of an equi-
librium which realises a tight semantical integration of the different
context formalisms which is in many applications not necessary. Due
to reasoning over all contexts, the whole computation is necessarily
synchronous as the different contexts have to agree on common beliefs
for establishing equilibria.

Many real world applications which utilise communication be-
tween different services use asynchronous communication protocols
(e.g., web services) and compute as soon as they have appropriate
information about the problem they have to address. Therefore, we
introduce asynchronous multi-context systems (aMCSs), a framework
for loosely coupled knowledge representation formalisms and ser-
vices. It still provides the capabilities to express different knowledge
representation languages and the translation of information from one
formalism to another. In addition, aMCSs are also aware of continuous
streams of information and provide ways to model the asynchronous
exchange of information. To communicate with the environment, they
utilise input and output streams.

We will illustrate aMCSs using the example of a task planner for
medical rescue units. Here, we assume a scenario where persons
are calling an emergency response team to report incidents and the
employee needs to collect all relevant information about the case.
Afterwards, the case needs to be classified and available resources
(e.g., free ambulances, . . .) have to be assigned to the emergencies.
In addition, current traffic data as well as the estimated time of ar-
rival should be considered by another employee, the dispatcher. Our
proposed aMCS that we understand as a recommender-system for
the emergency response employee as well as to the dispatcher, incor-
porates different contexts like a medical ontology, a database with
the current state of the ambulances, or a navigation system which
is connected to a traffic density reporter. We want to stress that this
might be one application where it would be a great gain for the overall
system by allowing asynchronous computation and communication
such that it is not necessary to wait for all other contexts (e.g., it would
be unnecessary to wait for the recommendation of a plan of action for
the dispatcher during the treatment of an emergency call).

The remainder of this paper is structured as follows. At first we
will give a short background on concepts we need. In Section 3, we
extend the basic ideas of MCS to propose our new notion of aMCS
for modelling asynchronous interaction between coupled knowledge
representation formalisms and formally characterise its behaviour over
time. The subsequent section presents an example scenario, where
asynchronous computation and a reactive response to different events
is needed. Section 5 compares aMCSs to rMCSs and shows how the
latter can be simulated by the former. Section 6 concludes this paper
with a discussion including an outlook on future work.

31

2 Preliminaries
We base our approach on the underlying ideas of mMCSs [3] which
extend heterogeneous multi-context systems (MCSs) [2] by a manage-
ment layer. It allows for complex updates and revisions of knowledge
bases and is realised by a management function that provides the
updates for each equilibrium. Despite we build on mMCSs, they differ
substantially in some aspects from the formalism we introduce in
this work for reasons intrinsic to the asynchronous approach (cf. Sec-
tion 5). Consequently, we only reuse basic notions from the original
work and refer the interested reader to the paper of Brewka et al. [3]
for full details on mMCS.

Like mMCS, aMCSs build on an abstract notion of a logic suite
which can be seen as an abstraction of different formalisms for knowl-
edge representation. A logic suite is a triple LS = 〈KB,BS,ACC〉,
where KB is the set of admissible knowledge bases (KBs) of LS.
Each knowledge base is a set of formulas that we do not further spec-
ify. BS is the set of possible belief sets of LS, whose elements are
beliefs. A semantics for LS is a function ACC : KB → 2BS assign-
ing to each KB a set of acceptable belief sets. Using a semantics with
potentially more than one acceptable belief set allows for modelling
non-determinism, where each belief set corresponds to an alterna-
tive solution. Finally, ACC is a set of semantics for LS. We denote
KB,BS, respectively, ACC by KBLS ,BSLS , respectively, ACCLS .

The motivation behind having multiple semantics for one formalism
is that in our framework, the semantics of a formalism can be changed
over time. While it is probably rarely the case that one wants to
switch between different families of semantics during a run, e.g.,
from the stable-model semantics to the well-founded semantics of
logic programs other switches of semantics are quite natural to many
applications: we use different semantics to express different reasoning
modes or to express different queries, i.e., ACC1 returns belief sets
answering a query q1, whereas ACC2 answers query q2; ACC3, in
turn, could represent the computation of all solutions to a problem,
whereas at some point in time one could be interested in using ACC4

that only computes a single solution. For instance one that is optimal
with respect to some criterion.

3 Asynchronous Multi-Context Systems
An aMCS is built up by multiple contexts which are defined next and
which are used for representing reasoning units. We assume a setN
of names that will serve as labels for sensors, contexts, and output
streams.

Definition 1 A context is a pair C = 〈n,LS〉 where n ∈ N is the
name of the context and LS is a logic suite.

For a given context C = 〈n,LS〉 we denote n and LS by nC and
LSC , respectively.

Definition 2 An aMCS (of length n with m output streams) is a pair
M = 〈C,O〉, where C = 〈C1, . . . , Cn〉 is an n-tuple of contexts and
O = 〈o1, . . . , om〉 with oj ∈ N for each 1 ≤ j ≤ m is a tuple
containing the names of the output streams of M .

ByN (M) we denote the set {nC1 , . . . , nCn , o1, . . . , om} of names
of contexts and output streams of M .

A context in an aMCS communicates with other contexts and the
outside world by means of streams of data. In particular, we assume
that every context has an input stream on which information can
be written from both external sources (we call them sensors) and

internal sources (i.e., other contexts). For the data in the communica-
tion streams we assume a communication language IL where every
i ∈ IL is an abstract piece of information. In our framework, the data
in the input stream of a context and the data in output streams are
modelled by information buffers that are defined in the following.

Definition 3 A data package is a pair d = 〈s, I〉, where s ∈ N is
either a context name or a sensor name, stating the source of d , and
I ⊆ IL is a set of pieces of information. An information buffer is a
sequence of data packages.

As we assume that data is asynchronously passed to a context on
its input stream, it is natural that not all information required for a
computation is available at all times. Consequently, we need means
to decide whether a computation should take place, depending on the
current KB and the data currently available on the stream, or whether
the context has to wait for more data. In our framework, this decision
is made by a computation controller as defined next.

Definition 4 Let C = 〈n,LS〉 be a context. A computation controller
for C is a relation cc between a KB KB ∈ KBLS and a finite
information buffer.

Thus, if 〈KB, ib〉 ∈ cc then a computation should take place, whereas
〈KB, ib〉 6∈ cc means that further information is required before the
next computation is triggered in the respective context.

In contrast to the original definition of multi-context systems [1]
and extensions thereof, we do not make use of so-called bridge rules
as a means to communicate: a bridge rule defines which information
a context should obtain based on the results of all the contexts of
a multi-context system. In the asynchronous approach, we do not
have (synchronised) results of all contexts available in general. As a
consequence we use another type of rules, called output rules, that
define which information should be sent to another context or an
output stream, based on a result of a single context.

Definition 5 Let C = 〈n,LS〉 be a context. An output rule r for C
is an expression of the form

〈n, i〉 ←b1, . . . , bj , not bj+1, . . . , not bm, (1)

such that n ∈ N is the name of a context or an output stream, i ∈ IL
is a piece of information, and every b` (1 ≤ ` ≤ m) is a belief for C,
i.e., b` ∈ S for some S ∈ BSLS .

We call n the stakeholder of r, 〈n, i〉 the head of r denoted by hd(r)
and b1, . . . , bj , not bj+1, . . . , not bm the body bd(r) of r. More-
over, we say that r is active under S, denoted by S |= bd(r), if
{b1, . . . , bj} ⊆ S and {bj+1, . . . , bm} ∩ S = ∅.

Intuitively, the stakeholder is a reference to the addressee of infor-
mation i.

Definition 6 Let C = 〈n,LS〉 be a context, OR a set of output rules
for C, S ∈ BSLS a belief set, and n′ ∈ N a name. Then, the data
package

dC(S,OR, n′) = 〈n, {i | r ∈ OR, hd(r) = 〈n′, i〉, S |= bd(r)}〉

is the output of C with respect to OR under S relevant for n.

Compared to previous notions of multi-context systems, contexts
in our setting only specify which formalisms they use but they do
not contain knowledge bases, the concrete semantics to use, and
communication specifications. The reason is that for aMCSs these
may change over time. Instead, we wrap concepts that are subject to
change during runtime in the following notion of a configuration.

32

Definition 7 Let C = 〈n,LS〉 be a context. A configuration of
C is a tuple cf = 〈KB,ACC, ib, cm〉, where KB ∈ KBLS ,
ACC ∈ ACCLS , ib is a finite information buffer, and cm is a context
management for C which is a triple cm = 〈cc, cu,OR〉, where

• cc is a computation controller for C,
• OR is a set of output rules for C, and
• cu is a context update function for C which is a function that maps

an information buffer ib = d1, . . . , dm and an admissible knowl-
edge base of LS to a configuration cf ′ = 〈KB′,ACC′, ib′, cm ′〉
of C with ib′ = dk, . . . , dm for some k ≥ 1.

We write cccm , cucm , and ORcm to refer to the components of a given
context management cm = 〈cc, cu,OR〉. The context management is
the counterpart of a management function of an rMCS, that computes
an update of the knowledge base of a context given the results of
bridge rules of the context.

In Section 2 we already discussed why we want to change semantics
over time. Allowing also for changes of output rules can be motivated
with applications where it should be dynamically decided where to
direct the output of a context. For example, if a particular subproblem
can be solved by two contexts C1 and C2 and it is known that some
class of instances can be better solved by C1 and others by C2. Then
a third context that provides an instance can choose whether C1 or C2

should carry out the computation by adapting its output rules. Dynam-
ically changing output rules and semantics could require adjustments
of the other components of the context management. Thus, it makes
sense that also compution controllers and context update functions
are subject to change for the sake of flexibility.

Definition 8 Let M = 〈〈C1, . . . , Cn〉, 〈o1, . . . , om〉〉 be an aMCS.
A configuration of M is a pair

Cf = 〈〈cf 1, . . . , cf n〉, 〈ob1, . . . , obm〉〉,

where

• for all 1 ≤ i ≤ n cf i = 〈KB,ACC, ib, cm〉 is a configuration
for Ci and for every output rule r ∈ ORcm we have n ∈ N (M)
for 〈n, i〉 = hd(r), and

• obj = . . . , dl−1, dl is an information buffer with a final element
dl that corresponds to the data on the output stream named oj for
each 1 ≤ j ≤ m such that for each h ≤ l with dh = 〈n, i〉 we
have n = nCi for some 1 ≤ i ≤ n.

Figure 1 depicts an aMCS M with three contexts and a configura-
tion for M .

We next characterise the dynamic behaviour of an aMCS. For easier
notation we stick to a discrete notion of time represented by integers.

Definition 9 Let M = 〈〈C1, . . . , Cn〉, 〈o1, . . . , om〉〉 be an aMCS.
A run structure for M is a sequence

R = . . . ,Cf t,Cf t+1,Cf t+2, . . . ,

where t ∈ Z is a point in time, and every Cf t
′

in R (t′ ∈ Z) is a
configuration of M .

We will sometimes use cf ti to denote the configuration of a con-
text i that appears at time t in a given run structure in the context
of a given aMCS. Similarly, obt

j refers to the information buffer
representing the data in the output stream named oj . Moreover,
we write KBt

i, ACC
t
i, ib

t
i, and cmt

i to refer to the components of
cf ti = 〈KB,ACC, ib, cm〉. We say that context Ci is waiting at time
t if 〈KBt

i, ib
t
i〉 6∈ cccmt

i
.

aMCS Ms1

s2

s3

C3
KB

ACC

ib cc cu OR

C1
KB

ACC

ib cc cu OR

C2
KB

ACC

ib cc cu OR

Figure 1. An aMCS with three contexts, three sensors on the left side, and
three output streams on the right side. A solid line represents a flow of

information from a context to its stakeholder streams, whereas a dashed line
indicates sensor data written to the input buffer of a context.

From run structure to run In aMCSs we take into account that the
computation of the semantics of a knowledge base needs time. More-
over, in a computation of our framework, different belief sets may
become available at different times and verifying the non-existence of
further belief sets can also take time after the final belief set has been
computated. In order to model whether a context is busy with com-
puting, we introduce a boolean variable busyt

i for each configuration
cf ti in a run structure. Hence, context Ci is busy at time t iff busyt

i is
true. While a context is busy, it does not read new information from
its input stream until every belief set has been computed and it has
concluded that no further belief set exists.

After the computation of a belief set, the output rules are applied
in order to determine which data is passed on to stakeholder contexts
or output streams. These are represented by stakeholder buffers: An
information buffer b is the stakeholder buffer of Ci (for n) at time t if

• b = ibt
i′ for some 1 ≤ i′ ≤ n such that n = nCi is stakeholder of

some output rule in ORcmt
i

or
• b = obt

j′ for some 1 ≤ j′ ≤ m such that n = oj′ is stakeholder
of some output rule in ORcmt

i
.

In order to indicate that a computation has finished we assume a
dedicated symbol EOC ∈ IL that notifies a context’s stakeholder
buffers about the end of a computation.

Next, we formally characterise the behaviour of aMCSs followed
by a summary of its intuition.

Definition 10 Let M be an aMCS of length n with m output streams
and R a run structure for M . R is a run for M if the following
conditions hold for every 1 ≤ i ≤ n and every 1 ≤ j ≤ m:

(i) if cf ti and cf t+1
i are defined, Ci is neither busy nor waiting at time

t, then

– Ci is busy at time t+ 1,

– cf t+1
i = cucmt

i
(ibt

i,KBt
i)

We say that Ci started a computation for KBt+1
i at time t+ 1.

(ii) if Ci started a computation for KB at time t then

– we say that this computation ended at time t′, if t′ is the ear-
liest time point with t′ ≥ t such that 〈nCi ,EOC〉 is added
to every stakeholder buffer b of Ci at t′; the addition of

33

dCi(S,OR
cmt′′

i
, n) to b is called an end of computation no-

tification.

– for all t′ > t such that cf t
′
i is defined, Ci is busy at t′ unless

the computation ended at some time t′′ with t < t′′ < t′.

– if the computation ended at time t′ and cf t
′+1
i is defined then

Ci is not busy at t′ + 1.

(iii) if Ci started a computation for KB at time t that ended at time
t′ then for every belief set S ∈ ACCt

i there is some time t′′ with
t ≤ t′′ ≤ t′ such that

– dCi(S,OR
cmt′′

i
, n) is added to every stakeholder buffer b of

Ci for n at t′′.

We say that Ci computed S at time t′′. The addition of
dCi(S,OR

cmt′′
i
, n) to b is called a belief set notification.

(iv) if obt
j and obt+1

j are defined and obt
j = . . . , dl−1, dl then

obt+1
j = . . . , dl−1, dl, . . . , dl′ for some l′ ≥ l. Moreover, ev-

ery data package dl′′ with l < l′′ ≤ l′ that was added at time
t+1 results from an end of computation notification or a belief set
notification.

(v) if cf ti and cf t+1
i are defined, Ci is busy or waiting at time t, and

ibt
i = d1, . . . , dl then we have ibt+1

i = d1, . . . , dl, . . . , dl′ for
some l′ ≥ l. Moreover, every data package dl′′ with l < l′′ ≤
l′ that was added at time t + 1 either results from an end of
computation notification or a belief set notification or n /∈ N (M)
(i.e., n is a sensor name) for dl′′ = 〈n, i〉.

Condition (i) describes the transition from an idle phase to an ongoing
computation. The end of such a compation is marked by an end of
computation notification as introduced in Item (ii). Condition (iii)
states that between the start and the end of a computation all belief
sets are computed and stakeholders are notified. Items (iv) and (v)
express how data is added to an output stream or to an input stream,
respectively. Note that here, sensors and the flow of information from
sensors to the input buffers of contexts are implicit. That is, data
packages from a sensor may appear at the end of input buffers at
all times and the only reference to a particular sensor is its name
appearing in a data package.

Summarising the behaviour characterised by a run, whenever a
context C is not busy, its context controller cc checks whether a new
computation should take place, based on the knowledge base and
the current input buffer of C. If yes, the current configuration of the
context is replaced by a new one, computed by the context update
function cu of C. Here, the new input buffer has to be a suffix of
the old one and a new computation for the updated knowledge base
starts. After an undefined period of time, belief sets are computed
and based on the application of output rules of C, data packages are
sent to stakeholder buffers. At some point in time, when all belief sets
have been computed, an end of computation notification is sent to
stakeholders, and the context is not busy anymore.

4 Scenario: Computer-Aided Emergency Team
Management

Now we want to consider a scenario, where aMCSs may be used to de-
scribe the asynchronous information-exchange between different spe-
cialised reasoning systems. Our example deals with a recommender-
system for the coordination and handling of ambulance assignments.
The suggested aMCS supports decisions in various stages of an emer-
gency case. It gives assistance during the rescue call, helps in assign-
ing priorities and rescue units to a case, and assists in the necessary

communication among all involved parties. The suggestions given by
the system are based on different specialised systems which react to
sensor readings. Moreover, the system can tolerate and incorporate
overriding solutions proposed by the user that it considers non-optimal.

Navigation

Amb Manager Task Planner

Case AnalyserMed Ontology

ER Employee

Case Dispatcher

Traffic state
Ambulance

CAET Management

Figure 2. The Computer-Aided Emergency Team Management aMCS

Figure 2 depicts the example aMCS which models such a Computer-
Aided Emergency Team Management System (CAET Management
System). Note that interaction with a human (e.g., EM employee) is
modelled as a pair containing an input stream and an output stream.
The system consists of the following contexts:

Case Analyser (ca) This context implements a computer-aided call
handling system which assists an emergency response employee
(ER employee) during answering an emergency call. The system
utilises reasoning methods to choose which questions need to be
asked based on previous answers. In addition, it may check whether
answers are inconsistent (e.g., amniotic sac bursts when the gender
is male). For these purposes the case analyser context may also
consult a medical ontology represented by another context. The
communication with the ER employee is represented, on the one
hand, as a sensor that reads the input of the employee and, on the
other hand, by an output stream which prints the questions and
results on a computer screen.
During the collection of all the important facts for this emergency
case, the analyser computes the priority of the case and passes it to
the task planner.

Med Ontology (mo) This medical ontology can be realised, e.g.,
by a description logic reasoner which handles requests from the
case analyser and returns more specific knowledge about ongoing
cases. This information may be used for the prioritisation of the
importance of a case.

Task Planner (tp) This context keeps track of emergency cases.
Based on the priority and age of a case and the availability and
position of ambulances it suggests an efficient plan of action for
the ambulances to the (human) case dispatcher (cd). The dispatcher
may approve some of the suggestions or all of them. If the dis-
patcher has no faith in the given plan of action, she can also alter
it at will. These decisions are reported back to the planning sys-

34

tem such that it can react to the alterations and provide further
suggestions. Based on the final plan, the task planner informs the
ambulance about their new mission.
The knowledge base of the context is an answer-set program for
reasoning about a suggested plan. It gets the availability and posi-
tion of the ambulances by the ambulance manager. In addition, the
cases with their priority are provided by the case analyser. With
this information, the task planner gives the locations of the ambu-
lances together with the target locations of the cases to a navigation
system which provides the distances (i.e., the estimated time of
arrival (ETA)) of all the ambulances to all the locations.

Amb Manager (am) The ambulance manager is a database, which
keeps track of the status and location of ambulance units. Each
ambulance team reports its status (e.g., to be on duty, waiting
for new mission, . . .) to the database (modelled by the sensor
“Ambulance” (amb)). Additionally, the car periodically sends GPS-
coordinates to the database. These updates will be pushed to the
task planner.

Navigation (na) This part of the aMCS gets traffic information (e.g.,
congestions, roadblocks, construction zones, . . .) to predict the
travel time for each route as accurate as possible. The task planner
may push a query to the navigation system, which consists of a
list of locations of ambulance units and a list of locations of target
areas. Based on all the given information this context will return
a ranking for each target area, representing the ETAs for each
ambulance.

Now we want to have a closer look on the instantiation details of
some aspects of our example. At first we investigate the cc relation
of the case analyser. It allows for the computation of new belief sets
whenever the ER employee pushes new information to the analyser.
In addition, it will also approve of a new computation if the medical
ontology supplies some requested information. Recall that the case
analyser also assigns a priority to each case and that we want to
allow the employee to set the priority manually. Let us suppose that
such a manual override occurs and that the case analyser has an
ongoing query to the medical ontology. Due to the manual priority
assignment, the requested information from the ontology is no longer
needed. Therefore, it would be desirable that cc does not allow for a
recomputation if all conclusions of the ontology are only related to
the manually prioritised case. With the same argumentation in mind,
the context update function cu will also ignore this information on
the input stream. This kind of behaviour may need knowledge about
past queries which can be provided by an additional output rule for
the case analyser which feeds the relevant information back to the
context.

Next, we will have a look at the task planner that is based on
answer-set programming. We will only present parts of the program,
to show how the mechanics are intended to work. To represent the
incoming information on the input stream, the following predicates
can be used:

case(caseid,loc,priority) represents an active case (with
its location and priority) which needs to be assigned to an ambu-
lance.

avail(amb,loc) states the location of an available ambulance.
eta(caseid,amb,value) provides the estimated time of ar-

rival for a unit at the location of the target area of the case.
assign(amb,caseid) represents the assignment of an ambu-

lance to a case by the dispatcher.

These predicates will be added by the context update function to
the knowledge base if corresponding information is put on the input

stream of the context. Based on this knowledge, the other components
of the answer-set program will compute the belief sets (e.g., via the
stable model semantics). Note that an already assigned ambulance or
case will not be handled as an available ambulance or an active case,
respectively. In addition, cu can (and should) also manage forgetting
of no longer needed knowledge. For our scenario it may be suitable
to remove all eta, avail and case predicates when the cases or
the unit is assigned. The assign predicate can be removed when the
ambulance manager reports that the assigned ambulance is available
again.

The set OR of output rules of the task planner could contain the
following rules:3

〈cd,assign(A,C)〉 ← sugassignment(A,C)

〈na,queryA(L)〉 ← avail(A), not assign(A,), loc(A,L)

〈na,queryC(L)〉 ← case(C,P), loc(A,L), not assign(A,)

〈amb,assigned(A,C)〉 ← assign(A,C)

The first rule informs the case dispatcher (cd) about a suggested
assignment that has been computed by the answer-set program. Rules
two and three prepare lists of ambulances and cases for querying the
navigation context. Recall that the latter needs a list of ambulance
locations (generated by rule two) and a list of target area locations
(generated by rule three). Also keep in mind that for each belief
set a data package with all information for one context or output
stream is constructed. So the whole list of current target areas and
free ambulance units will be passed to the navigation context at once.
The last rule notifies the ambulance team that it has been assigned to
a specific case.

Related to this example we want to mention privacy aspects as
a real world policy which is especially important to applications
in public services and health care. As the multi-context system is
a heterogeneous system with different contexts, a completely free
exchange of data may be against privacy policies. This issue can be
addressed by the adequate design of output rules, which can also be
altered with respect to additional information in the input stream (e.g.,
some context gains the permission to receive real names instead of
anonymous data). So each context may decide by its own which parts
of the belief sets are shared and exchanged with other contexts.

Another interesting aspect about aMCSs is the possibility to easily
join two aMCSs together, outsource a subset of contexts in a new
aMCS, or to view an aMCS as an abstract context for another aMCS
in a modular way. This can be achieved due to the abstract communi-
cation by means of streams. With respect to our scenario there could
be some aMCS which does the management of resources for hospi-
tals (e.g., free beds with their capabilities). The task planner might
communicate with this system to take the needed services for a case
into account (e.g., intensive care unit) and informs the hospital via
these streams about incoming patients. It would be easy to join both
aMCSs together to one big system or to outsource some contexts as
input sensors paired with an output stream. In addition, one may also
combine different contexts or a whole aMCS to one abstract context
to provide a dynamic granularity of information about the system and
to group different reasoning tasks together.

5 Relation to Reactive Multi-Context Systems
In this section we want to address differences and communalities
between aMCSs and rMCSs [4] as both are types of multi-context

3 Keep in mind that in an actual implementation one may want to provide
further information via communication.

35

systems that work in an online fashion and can react to external infor-
mation. Runs of rMCSs are based on equilibria which are collections
of belief sets—one for each context—on which, intuitively, all of
the contexts have to agree. Thus, equilibria can be seen as a tight
integration approach in which the semantics of the individual contexts
are interdependent. However, the high level of integration also comes
at the price that the different contexts must wait for each other for
the computation of each equilibrium, i.e., they are synchronised. In
aMCSs, on the other hand, the coupling of the semantics is much
looser—communication between contexts only works via data pack-
ages that are sent to another context after a computation and not via a
higher-level common semantics for multiple contexts. But as a benefit,
each context can run at its own pace which is useful in settings where
there is a context that requires much more time for evaluating its
semantics than others.

A further difference is the role of non-determinism in the semantics
of aMCSs and rMCSs. An equilibrium in an aMCS consists of a single
belief set for each context. Hence, as aMCSs also use a multiple belief
set semantics, there may also be multiple equilibria as a source of
non-determinism at each step in a run. For aMCSs, all belief sets
of a context are computed in a consecutive way (we assume that if
only a single belief set is desired than the semantics of the respective
context should be adapted accordingly by the knowledge engineer).
Nevertheless, there is also a source of non-determinism in the case of
aMCSs caused by the undefined duration of computations.

Regarding the computational complexity of the two frameworks,
the computation of an equilibrium requires to guess an equilibrium
candidate first before the semantics of the context is computed which
is expensive regarding runtime when put to practice. In theory, this
guess does not add extra complexity if the context semantics is al-
ready NP-hard (as shown in [4]) because it can be combined with
the guesses required in the contexts. However, this trick cannot be
used in implementations that uses black boxes for computing context
semantics. On the other hand, aMCSs do not add substantial com-
putational requirements to the effort needed for computing context
semantics. In particular, aMCSs are scalable as adding a further con-
text has no direct influence on how the semantics of the other contexts
are computed but can only influence the input they get.

Both, aMCSs and rMCSs are very general frameworks that allow
for simulating Turing machines and thus for performing multi-purpose
computations even if only very simple context formalisms are used (if
the length of a run is not restricted). In this sense the approaches are
equally expressive. Moreover, when allowing for arbitrary contexts
one could trivially simulate the other by including it as a context.
Despite the existence of these straightforward translations, we next
sketch how we simulate an rMCS with an aMCS using a more direct
translation, as this gives further insight into the differences of the two
frameworks. Moreover, it demonstrates a way to implement rMCSs
by means of aMCSs. For every context Ci of a given rMCS Mr , we
introduce three contexts in the aMCS Ma that simulates Mr:

• a context Ckb
i that stores the current knowledge base of the context,

• a context Ckb′
i in which a candidate for an updated knowledge base

can be written and its semantics can be computed, and
• a management context Cm

i that implements the bridge rules, and
the management function of the context.

There are three further contexts:

• Cobs receives sensor data and distributes it to every context Cm
i

where Ci depends on the respective sensor. The context is also
responsible for synchronisation: for each sensor, new sensor data
is only passed on after an equilibrium has been computed.

• Cguess guesses equilibrium candidates for M and passes them to
the management contexts Cm

i . Based on that and the information
from Cobs, Cm

i computes an update kb′i of the knowledge base in
Ckb

i and stores kb′i in Ckb′
i . The latter context then computes the

semantics of kb′i and passes it to the final context
• Ccheck that compares every belief set it receives with the equilib-

rium candidate (that it also receives from Cguess). If a matching
belief set has been found for each context of Mr , the candidate is
an actual equilibrium. In this case Ccheck sends the equilibrium to
an output stream and notifies the other contexts about the success.

In case of a success, every context Cm
i replaces the knowledge base

in Ckb
i by kbi and a next iteration begins. In case no equilibrium

was found but one of the Ckb′
i contexts has finished its computation,

Ccheck orders Cguess to guess another equilibrium candidate.

6 Related Work and Discussion
A concept similar to output-rules has been presented in the form of
reactive bridge rules [6]. There the flow of information is represented
by rules which add knowledge to the input streams of other con-
texts. Which information is communicated to other contexts is also
determined by the local belief set of each context.

Note that evolving multi-context systems [8] follow a quite simi-
lar approach as rMCSs and hence the relation of aMCSs to rMCSs
sketched in the previous section also applies in essence to this ap-
proach.

The system clingo [7] is a reactive answer-set programming
solver. It utilises TCP/IP ports for incoming input streams and does
also report the resulting answer sets via such a port. It provides means
to compute different semantics and can keep learned structures and
knowledge from previous solving steps. Although there are no output
rules or input stream pre-processing as in aMCSs, the system features
embedded imperative programming languages which may be helpful
to model some of the presented concepts of this paper.

In general, the tasks performed by a context management can be
realised by different formalisms (e.g., imperative scripting languages
or declarative programming). Here, it seems likely that different lan-
guages can be the most appropriate management language, depending
on the type of context formalism and the concrete problem domain.
A feature that is not modelled in our proposal but that is potentially
useful and we intend to consider in the future is to allow for abort-
ing computations. Moreover, we want to study modelling patterns
and best practices for aMCSs design for typical application settings
and compare different inter-context topologies and communication
strategies.

The next natural step towards an implementation is an analysis of
how existing tools such as clingo could be used for a realisation.
It is clear that such formalisms can be used as a context formalism.
Moreover, we are interested in how reactive features of clingo
(e.g., iterative computation, on-demand grounding, online-queries,
. . .) relate to aMCS concepts (e.g., cc, ib, . . .) and whether the system
can be described in terms of an aMCS.

REFERENCES
[1] Gerhard Brewka and Thomas Eiter, ‘Equilibria in heterogeneous non-

monotonic multi-context systems’, in AAAI’07, pp. 385–390, (2007).
[2] Gerhard Brewka, Thomas Eiter, and Michael Fink, ‘Nonmonotonic

multi-context systems: A flexible approach for integrating heterogeneous
knowledge sources’, in Logic Programming, Knowledge Representation,
and Nonmonotonic Reasoning, 233–258, Springer, (2011).

36

[3] Gerhard Brewka, Thomas Eiter, Michael Fink, and Antonius Weinzierl,
‘Managed multi-context systems’, in IJCAI’11, pp. 786–791, (2011).

[4] Gerhard Brewka, Stefan Ellmauthaler, and Jörg Pührer, ‘Multi-context
systems for reactive reasoning in dynamic environments’, in Proc.
ECAI’14, (2014). To appear.

[5] Fu-Leung Cheng, Thomas Eiter, Nathan Robinson, Abdul Sattar, and
Kewen Wang, ‘Lpforget: A system of forgetting in answer set program-
ming’, in Proc. AUSAI’06, eds., Abdul Sattar and Byeong Ho Kang,
volume 4304 of LNCS, pp. 1101–1105. Springer, (2006).

[6] Stefan Ellmauthaler, ‘Generalizing multi-context systems for reactive
stream reasoning applications’, in Proc. ICCSW’13, pp. 17–24, (2013).

[7] Martin Gebser, Torsten Grote, Roland Kaminski, Philipp Obermeier,
Orkunt Sabuncu, and Torsten Schaub, ‘Stream reasoning with answer
set programming: Preliminary report’, in Proc. KR’12, (2012).

[8] Ricardo Gonçalves, Matthias Knorr, and João Leite, ‘Evolving multi-
context systems’, in Proc. ECAI’14, (2014). To appear.

[9] Jérôme Lang and Pierre Marquis, ‘Reasoning under inconsistency: A
forgetting-based approach’, Artif. Intell., 174(12-13), 799–823, (2010).

[10] Danh Le-Phuoc, Josiane Xavier Parreira, and Manfred Hauswirth,
‘Linked stream data processing’, in Proc. RW’12, eds., Thomas Eiter and
Thomas Krennwallner, volume 7487 of LNCS, pp. 245–289. Springer,
(2012).

[11] Carlo Zaniolo, ‘Logical foundations of continuous query languages for
data streams’, in Proc. Datalog 2.0, pp. 177–189, (2012).

37

Towards Efficient Evolving Multi-Context Systems
(Preliminary Report)

Ricardo Gonçalves and Matthias Knorr and João Leite 1

Abstract. Managed Multi-Context Systems (mMCSs) provide a
general framework for integrating knowledge represented in hetero-
geneous KR formalisms. Recently, evolving Multi-Context Systems
(eMCSs) have been introduced as an extension of mMCSs that add
the ability to both react to, and reason in the presence of commonly
temporary dynamic observations, and evolve by incorporating new
knowledge. However, the general complexity of such an expressive
formalism may simply be too high in cases where huge amounts
of information have to be processed within a limited short amount
of time, or even instantaneously. In this paper, we investigate under
which conditions eMCSs may scale in such situations and we show
that such polynomial eMCSs can be applied in a practical use case.

1 Introduction

Multi-Context Systems (MCSs) were introduced in [7], building on
the work in [16, 27], to address the need for a general framework
that integrates knowledge bases expressed in heterogeneous KR for-
malisms. Intuitively, instead of designing a unifying language (see
e.g., [17, 26], and [23] with its reasoner NoHR [22]) to which other
languages could be translated, in an MCS the different formalisms
and knowledge bases are considered as modules, and means are pro-
vided to model the flow of information between them (cf. [1, 21, 24]
and references therein for further motivation on hybrid languages and
their connection to MCSs).

More specifically, an MCS consists of a set of contexts, each of
which is a knowledge base in some KR formalism, such that each
context can access information from the other contexts using so-
called bridge rules. Such non-monotonic bridge rules add its head
to the context’s knowledge base provided the queries (to other con-
texts) in the body are successful. Managed Multi-Context Systems
(mMCSs) were introduced in [8] to provide an extension of MCSs
by allowing operations, other than simple addition, to be expressed
in the heads of bridge rules. This allows mMCSs to properly deal
with the problem of consistency management within contexts.

One recent challenge for KR languages is to shift from static appli-
cation scenarios which assume a one-shot computation, usually trig-
gered by a user query, to open and dynamic scenarios where there is
a need to react and evolve in the presence of incoming information.
Examples include EVOLP [2], Reactive ASP [14, 13], C-SPARQL
[5], Ontology Streams [25] and ETALIS [3], to name only a few.

Whereas mMCSs are quite general and flexible to address the
problem of integration of different KR formalisms, they are essen-
tially static in the sense that the contexts do not evolve to incorporate

1 CENTRIA & Departamento de Informática, Faculdade Ciências e Tecnolo-
gia, Universidade Nova de Lisboa, email: rjrg@fct.unl.pt

the changes in the dynamic scenarios. In such scenarios, new knowl-
edge and information is dynamically produced, often from several
different sources – for example a stream of raw data produced by
some sensors, new ontological axioms written by some user, newly
found exceptions to some general rule, etc.

To address this issue, two recent frameworks, evolving Multi-
Context Systems (eMCSs) [19] and reactive Multi-Context Systems
(rMCSs) [6, 12, 9] have been proposed sharing the broad motiva-
tion of designing general and flexible frameworks inheriting from
mMCSs the ability to integrate and manage knowledge represented
in heterogeneous KR formalisms, and at the same time be able to
incorporate knowledge obtained from dynamic observations.

Whereas some differences set eMCSs and rMCSs apart (see re-
lated work in Sec. 6), the definition of eMCSs is presented in a more
general way. That, however, means that, as shown in [19], the worst-
case complexity is in general high, which may be problematic in dy-
namic scenarios where the overall system needs to evolve and react
interactively. This is all the more true for huge amounts of data – for
example raw sensor data is likely to be constantly produced in large
quantities – and systems that are capable of processing and reasoning
with such data are required.

At the same time, eMCSs inherit from MCSs the property that
models, i.e., equilibria, may be non-minimal, which potentially ad-
mits that certain pieces of information are considered true based
solely on self-justification. As argued in [7], minimality may not al-
ways be desired, which can in principle be solved by indicating for
each context whether it requires minimality or not. Yet, avoiding self-
justifications for those contexts where minimality is desired has not
been considered in eMCSs.

In this paper, we tackle these problems and, in particular, consider
under which conditions reasoning with evolving Multi-Context Sys-
tems can be done in polynomial time. For that purpose, we base our
work on a number of notions studied in the context of MCSs that
solve these problems in this case [7]. Namely, we adapt the notions
of minimal and grounded equilibria to eMCSs, and subsequently a
well-founded semantics, which indeed paves the way to the desired
result.

The remainder of this paper is structured as follows. After intro-
ducing the main concepts regarding mMCSs in Sect. 2, in Sect. 3 we
recall with more detail the framework of eMCSs already introduc-
ing adjustments to achieve polynomial reasoning. Then, in Sect. 4
we present an example use case, before we adapt and generalize no-
tions from MCSs in Sect. 5 as outlined. We conclude in Sect. 6 with
discussing related work and possible future directions.

39

2 Preliminaries: Managed Multi-Context Systems

Following [7], a multi-context system (MCS) consists of a collec-
tion of components, each of which contains knowledge represented
in some logic, defined as a triple L = 〈KB,BS,ACC〉 where KB
is the set of well-formed knowledge bases of L, BS is the set of pos-
sible belief sets, and ACC : KB → 2BS is a function describing
the semantics of L by assigning to each knowledge base a set of ac-
ceptable belief sets. We assume that each element of KB and BS is
a set, and define F = {s : s ∈ kb ∧ kb ∈ KB}.

In addition to the knowledge base in each component, bridge rules
are used to interconnect the components, specifying what knowl-
edge to assert in one component given certain beliefs held in the
components of the MCS. Bridge rules in MCSs only allow adding
information to the knowledge base of their corresponding context.
In [8], an extension, called managed Multi-Context Systems (mM-
CSs), is introduced in order to allow other types of operations to
be performed on a knowledge base. For that purpose, each con-
text of an mMCS is associated with a management base, which is
a set of operations that can be applied to the possible knowledge
bases of that context. Given a management base OP and a logic
L, let OF = {op(s) : op ∈ OP ∧ s ∈ F} be the set of opera-
tional formulas that can be built from OP and F. Each context of an
mMCS gives semantics to operations in its management base using
a management function over a logic L and a management base OP ,
mng : 2OF ×KB→ KB, i.e.,mng(op, kb) is the knowledge base
that results from applying the operations in op to the knowledge base
kb. Note that this is already a specific restriction in our case, as mng
commonly returns a (non-empty) set of possible knowledge bases
for mMCS (and eMCS). We also assume that mng(∅, kb) = kb.
Now, for a sequence of logics L = 〈L1, . . . , Ln〉 and a management
base OPi, an Li-bridge rule σ over L, 1 ≤ i ≤ n, is of the form
H(σ) ← B(σ) where H(σ) ∈ OFi and B(σ) is a set of bridge
literals of the forms (r : b) and not (r : b), 1 ≤ r ≤ n, with b a
belief formula of Lr .

A managed Multi-Context System (mMCS) is a sequence M =
〈C1, . . . , Cn〉, where each Ci, i ∈ {1, . . . , n}, called a managed
context, is defined as Ci = 〈Li, kbi, br i, OPi,mngi〉 where Li =
〈KBi,BSi,ACCi〉 is a logic, kbi ∈ KBi, br i is a set ofLi-bridge
rules, OPi is a management base, and mngi is a management func-
tion over Li and OPi. Note that, for the sake of readability, we con-
sider a slightly restricted version of mMCSs where ACCi is still a
function and not a set of functions as for logic suites [8].

For an mMCS M = 〈C1, . . . , Cn〉, a belief state of M is a se-
quence S = 〈S1, . . . , Sn〉 such that each Si is an element of BSi.
For a bridge literal (r : b), S |= (r : b) if b ∈ Sr and S |= not (r :
b) if b /∈ Sr; for a set of bridge literalsB, S |= B if S |= L for every
L ∈ B. We say that a bridge rule σ of a context Ci is applicable
given a belief state S of M if S satisfies B(σ). We can then define
appi(S), the set of heads of bridge rules of Ci which are applicable
in S, by setting appi(S) = {H(σ) : σ ∈ br i ∧ S |= B(σ)}.

Equilibria are belief states that simultaneously assign an accept-
able belief set to each context in the mMCS such that the appli-
cable operational formulas in bridge rule heads are taken into ac-
count. Formally, a belief state S = 〈S1, . . . , Sn〉 of an mMCS
M is an equilibrium of M if, for every 1 ≤ i ≤ n, Si ∈
ACCi(mngi(appi(S), kbi)).

3 Evolving Multi-Context Systems
In this section, we recall evolving Multi-Context Systems as intro-
duced in [19] including some alterations that are in line with our
intentions to achieve polynomial reasoning. As indicated in [19], we
consider that some of the contexts in the MCS become so-called ob-
servation contexts whose knowledge bases will be constantly chang-
ing over time according to the observations made, similar, e.g., to
streams of data from sensors.2

The changing observations then will also affect the other contexts
by means of the bridge rules. As we will see, such effect can either
be instantaneous and temporary, i.e., limited to the current time in-
stant, similar to (static) mMCSs, where the body of a bridge rule is
evaluated in a state that already includes the effects of the operation
in its head, or persistent, but only affecting the next time instant. To
achieve the latter, we extend the operational language with a unary
meta-operation next that can only be applied on top of operations.

Definition 1 Given a management base OP and a logic L, we de-
fine eOF , the evolving operational language, as eOF = OF ∪
{next(op(s)) : op(s) ∈ OF}.

We can now define evolving Multi-Context Systems.

Definition 2 An evolving Multi-Context System (eMCS) is a se-
quence Me = 〈C1, . . . , Cn〉, where each evolving context Ci,
i ∈ {1, . . . , n} is defined as Ci = 〈Li, kbi, br i, OPi,mngi〉 where

• Li = 〈KBi,BSi,ACCi〉 is a logic
• kbi ∈ KBi

• br i is a set of Li-bridge rules s.t. H(σ) ∈ eOFi
• OPi is a management base
• mngi is a management function over Li and OPi.

As already outlined, evolving contexts can be divided into regular
reasoning contexts and special observation contexts that are meant to
process a stream of observations which ultimately enables the entire
eMCS to react and evolve in the presence of incoming observations.
To ease the reading and simplify notation, w.l.o.g., we assume that
the first ` contexts, 0 ≤ ` ≤ n, in the sequence 〈C1, . . . , Cn〉 are
observation contexts, and, whenever necessary, such an eMCS can
be explicitly represented by 〈Co1 , . . . , Co` , C`+1, . . . , Cn〉.

As for mMCSs, a belief state for Me is a sequence S =
〈S1, . . . , Sn〉 such that, for each 1 ≤ i ≤ n, we have Si ∈ BSi.

Recall that the heads of bridge rules in an eMCS are more ex-
pressive than in an mMCS, since they may be of two types: those
that contain next and those that do not. As already mentioned, the
former are to be applied to the current knowledge base and not per-
sist, whereas the latter are to be applied in the next time instant and
persist. Therefore, we distinguish these two subsets.

Definition 3 Let Me = 〈C1, . . . , Cn〉 be an eMCS and S a belief
state for Me. Then, for each 1 ≤ i ≤ n, consider the following sets:

• appnexti (S) = {op(s) : next(op(s)) ∈ appi(S)}
• appnowi (S) = {op(s) : op(s) ∈ appi(S)}

Note that if we want an effect to be instantaneous and persistent,
then this can also be achieved using two bridge rules with identical
body, one with and one without next in the head.

Similar to equilibria in mMCS, the (static) equilibrium is defined
to incorporate instantaneous effects based on appnowi (S) alone.

2 For simplicity of presentation, we consider discrete steps in time here.

40

Definition 4 Let Me = 〈C1, . . . , Cn〉 be an eMCS. A belief state
S = 〈S1, . . . , Sn〉 for Me is a static equilibrium of Me iff, for each
1 ≤ i ≤ n, we have Si ∈ ACCi(mngi(app

now
i (S), kbi)).

Note the minor change due to mng now only returning one kb.
To be able to assign meaning to an eMCS evolving over time, we

introduce evolving belief states, which are sequences of belief states,
each referring to a subsequent time instant.

Definition 5 Let Me = 〈C1, . . . , Cn〉 be an eMCS. An evolving
belief state of size s for Me is a sequence Se = 〈S1, . . . , Ss〉 where
each Sj , 1 ≤ j ≤ s, is a belief state for Me.

To enable an eMCS to react to incoming observations and evolve,
an observation sequence defined in the following has to be processed.
The idea is that the knowledge bases of the observation contexts Coi
change according to that sequence.

Definition 6 Let Me = 〈Co1 , . . . , Co` , C`+1, . . . , Cn〉 be an
eMCS. An observation sequence for Me is a sequence Obs =
〈O1, . . . ,Om〉, such that, for each 1 ≤ j ≤ m, Oj = 〈oj1, . . . , oj`〉
is an instant observation with oji ∈ KBi for each 1 ≤ i ≤ `.

To be able to update the knowledge bases in the evolving con-
texts, we need one further notation. Given an evolving context Ci
and k ∈ KBi, we denote by Ci[k] the evolving context in which kbi
is replaced by k, i.e., Ci[k] = 〈Li, k, br i, OPi,mngi〉.

We can now define that certain evolving belief states are evolving
equilibria of an eMCS Me = 〈Co1 , . . . , Co` , C`+1, . . . , Cn〉 given an
observation sequence Obs = 〈O1, . . . ,Om〉 for Me. The intuitive
idea is that, given an evolving belief state Se = 〈S1, . . . , Ss〉 for
Me, in order to check if Se is an evolving equilibrium, we need to
consider a sequence of eMCSs, M1, . . . ,Ms (each with ` observa-
tion contexts), representing a possible evolution of Me according to
the observations inObs, such that Sj is a (static) equilibrium ofM j .
The knowledge bases of the observation contexts in M j are exactly
their corresponding elements oji inOj . For each of the other contexts
Ci, ` + 1 ≤ i ≤ n, its knowledge base in M j is obtained from the
one in M j−1 by applying the operations in appnexti (Sj−1).

Definition 7 Let Me = 〈Co1 , . . . , Co` , C`+1, . . . , Cn〉 be an eMCS,
Se = 〈S1, . . . , Ss〉 an evolving belief state of size s for Me, and
Obs = 〈O1, . . . ,Om〉 an observation sequence for Me such that
m ≥ s. Then, Se is an evolving equilibrium of size s of Me

given Obs iff, for each 1 ≤ j ≤ s, Sj is an equilibrium of
M j = 〈Co1 [oj1], . . . , Co` [oj`], C`+1[kj`+1], . . . , Cn[kjn]〉 where, for
each `+ 1 ≤ i ≤ n, kji is defined inductively as follows:

• k1i = kbi
• kj+1

i = mngi(app
next
i (Sj), kji)

Note that next in bridge rule heads of observation contexts are thus
without any effect, in other words, observation contexts can indeed
be understood as managed contexts whose knowledge base changes
with each time instant.

The essential difference to [19] is that the kj+1
i can be effectively

computed (instead of picking one of several options), simply because
mng always returns one knowledge base. The same applies in Def. 4.

As shown in [19], two consequences of the previous definitions are
that any subsequence of an evolving equilibrium is also an evolving
equilibrium, and mMCSs are a particular case of eMCSs.

4 Use Case Scenario

In this section, we illustrate eMCSs adapting a scenario on cargo
shipment assessment taken from [32].

The customs service for any developed country assesses imported
cargo for a variety of risk factors including terrorism, narcotics, food
and consumer safety, pest infestation, tariff violations, and intellec-
tual property rights.3 Assessing this risk, even at a preliminary level,
involves extensive knowledge about commodities, business entities,
trade patterns, government policies and trade agreements. Some of
this knowledge may be external to a given customs agency: for in-
stance the broad classification of commodities according to the in-
ternational Harmonized Tariff System (HTS), or international trade
agreements. Other knowledge may be internal to a customs agency,
such as lists of suspected violators or of importers who have a history
of good compliance with regulations. While some of this knowledge
is relatively stable, much of it changes rapidly. Changes are made not
only at a specific level, such as knowledge about the expected arrival
date of a shipment; but at a more general level as well. For instance,
while the broad HTS code for tomatoes (0702) does not change, the
full classification and tariffs for cherry tomatoes for import into the
US changes seasonally.

Here, we consider an eMCS Me = 〈Co1 , Co2 , C3, C4〉 composed
of two observation contexts Co1 and Co2 , and two reasoning con-
texts C3 and C4. The first observation context is used to capture
the data of passing shipments, i.e., the country of their origination,
the commodity they contain, their importers and producers. Thus,
the knowledge base and belief set language of Co1 is composed of all
the ground atoms over ShpmtCommod/2, ShpmtDeclHTSCode/2,
ShpmtImporter/2, ShpmtCountry/2, ShpmtProducer/2, and also
GrapeTomato/1 and CherryTomato/1. The second observation
context Co2 serves to insert administrative information and data from
other institutions. Its knowledge base and belief set language is com-
posed of all the ground atoms over NewEUMember/1, Misfiling/1,
and RandomInspection/1. Neither of the two observation contexts
has any bridge rules.

The reasoning context C3 is an ontological Description Logic
(DL) context that contains a geographic classification, along with
information about producers who are located in various countries.
It also contains a classification of commodities based on their har-
monized tariff information (HTS chapters, headings and codes, cf.
http://www.usitc.gov/tata/hts). We refer to [11] and
[8] for the standard definition of L3; kb3 is given as follows:

Commodity ≡ (∃HTSCode.>)
EdibleVegetable ≡ (∃HTSChapter. { ‘07’ })
CherryTomato ≡ (∃HTSCode. { ‘07020020’ })
Tomato ≡ (∃HTSHeading. { ‘0702’ })
GrapeTomato ≡ (∃HTSCode. { ‘07020010’ })
CherryTomato v Tomato CherryTomato u GrapeTomato v ⊥
GrapeTomato v Tomato Tomato v EdibleVegetable
EURegisteredProducer ≡ (∃RegisteredProducer.EUCountry)
LowRiskEUCommodity ≡ (∃ExpeditableImporter.>)u

(∃CommodCountry.EUCountry)
EUCountry(portugal) RegisteredProducer(p1 , portugal)
EUCountry(slovakia) RegisteredProducer(p2 , slovakia)

OP3 contains a single add operation to add factual knowledge.
The bridge rules br3 are given as follows:

3 The system described here is not intended to reflect the policies of any
country or agency.

41

add(CherryTomato(x))← (1 :CherryTomato(x))
add(GrapeTomato(x))← (1 :GrapeTomato(x))
next(add(EUCountry(x)))← (2 :NewEUMember(x))
add(CommodCountry(x,y))← (1 :ShpmtCommod(z,x)),

(1 :ShpmtCountry(z,y))
add(ExpeditableImporter(x,y))← (1 :ShpmtCommod(z,x)),

(1 :ShpmtImporter(z,y)), (4 :AdmissibleImporter(y)),
(4 :ApprovedImporterOf(y,x))

Note that kb3 can indeed be expressed in the DL EL++ [4] for which
standard reasoning tasks, such as subsumption, can be computed in
PTIME.

Finally, C4 is a logic programming (LP) indicating information
about importers, and about whether to inspect a shipment either to
check for compliance of tariff information or for food safety issues.
For L4 we consider that KBi the set of normal logic programs over
a signature Σ, BSi is the set of atoms over Σ, and ACCi(kb) re-
turns returns a singleton set containing only the set of true atoms in
the unique well-founded model. The latter is a bit unconventional,
since this way undefinedness under the well-founded semantics [15]
is merged with false information. However, as long as no loops over
negation occur in the LP context (in combination with its bridge
rules), undefinedness does not occur, and the obvious benefit of this
choice is that computing the well-founded model is PTIME-data-
complete [10]. We consider OP4 = OP3, and kb4 and br4 are given
as follows:

AdmissibleImporter(x)← ∼SuspectedBadGuy(x).
PartialInspection(x)← RandomInspection(x).
FullInspection(x)← ∼CompliantShpmt(x).
SuspectedBadGuy(i1).

next((SuspectedBadGuy(x))← (2 :Misfiling(x))
add(ApprovedImporterOf(i2 ,x))← (3 :EdibleVegetable(x))
add(ApprovedImporterOf(i3 ,x))← (1 :GrapeTomato(x))
add(CompliantShpmt(x))← (1 :ShpmtCommod(x,y)),

(3 :HTSCode(y, z)), (1 :ShpmtDeclHTSCode(x, z))
add(RandomInspection(x))← (1 :ShpmtCommod(x,y)),

(2 :Random(y))
add(PartialInspection(x))← (1 :ShpmtCommod(x,y)),

not (3 :LowRiskEUCommodity(y))
add(FullInspection(x))← (1 :ShpmtCommod(x,y)),

(3 :Tomato(y)), (1 :ShpmtCountry(x, slovakia))

Now consider the observation sequence Obs = 〈O1,O2,O3〉
where o11 consists of the following atoms on s1 (where s in s1 stands
for shipment, c for commodity, and i for importer):

ShpmtCommod(s1 , c1) ShpmtDeclHTSCode(s1 , ‘07020010’)
ShpmtImporter(s1 , i1) CherryTomato(c1)

o21 of the following atoms on s2 :

ShpmtCommod(s2 , c2) ShpmtDeclHTSCode(s2 , ‘07020020’)
ShpmtImporter(s2 , i2) ShpmtCountry(s2 , portugal)
CherryTomato(c2)

and o31 of the following atoms on s3 :

ShpmtCommod(s3 , c3) ShpmtDeclHTSCode(s3 , ‘07020010’)
ShpmtImporter(s3 , i3) ShpmtCountry(s3 , portugal)
GrapeTomato(c3) ShpmtProducer(s3 , p1)

while o12 = o32 = ∅ and o22 = {Misfiling(i3)}. Then, an evolv-
ing equilibrium of size 3 of Me given Obs is the sequence Se =
〈S1, S2, S3〉 such that, for each 1 ≤ j ≤ 3, Sj = 〈Sj1, Sj2, Sj3, Sj4〉.
Since it is not feasible to present the entire Se, we just highlight some
interesting parts related to the evolution of the system. E.g., we have
that FullInspection(s1) ∈ S1

4 since the HTS code does not corre-
spond to the cargo; no inspection on s2 in S2

4 since the shipment is
compliant, c2 is a EU commodity, and s2 was not picked for random
inspection; and PartialInspection(s3) ∈ S3

4 , even though s3 comes
from a EU country, because i3 has been identified at time instant 2
for misfiling, which has become permanent info available at time 3.

5 Grounded Equilibria and Well-founded
Semantics

Even if we only consider MCSs M , which are static and where an
implicit mng always returns precisely one knowledge base, such
that reasoning in all contexts can be done in PTIME, then decid-
ing whether M has an equilibrium is in NP [7, 8]. The same result
necessarily also holds for eMCSs, which can also be obtained from
the considerations on eMCSs [19].

A number of special notions were studied in the context of MCSs
that tackle this problem [7]. In fact, the notion of minimal equilibria
was introduced with the aim of avoiding potential self-justifications.
Then, grounded equilibria as a special case for so-called reducible
MCSs were presented for which the existence of minimal equilibria
can be effectively checked. Subsequently, a well-founded semantics
for such reducible MCSs was defined under which an approximation
of all grounded equilibria can be computed more efficiently. In the
following, we transfer these notions from static MCSs in [7] to dy-
namic eMCSs and discuss under which (non-trivial) conditions they
can actually be applied.

Given an eMCS Me = 〈C1, . . . , Cn〉, we say that a static equi-
librium S = 〈S1, . . . , Sn〉 is minimal if there is no equilibrium
S′ = 〈S′1, . . . , S′n〉 such that S′i ⊆ Si for all i with 1 ≤ i ≤ n
and S′j (Sj for some j with 1 ≤ j ≤ n.

This notion of minimality ensures the avoidance of self-
justifications in evolving equilibria. The problem with this notion in
terms of computation is that such minimization in general adds an
additional level in the polynomial hierarchy. Therefore, we now for-
malize conditions under which minimal equilibria can be effectively
checked. The idea is that the grounded equilibrium will be assigned
to an eMCS Me if all the logics of all its contexts can be reduced to
special monotonic ones using a so-called reduction function. In the
case where the logics of all contexts in Me turn out to be monotonic,
the minimal equilibrium will be unique.

Formally, a logic L = (KB,BS,ACC) is monotonic if

1. ACC(kb) is a singleton set for each kb ∈ KB, and

2. S ⊆ S′ whenever kb ⊆ kb′, ACC(kb) = {S }, and
ACC(kb′) = {S′ }.

Furthermore, L = (KB,BS,ACC) is reducible if for some
KB∗ ⊆ KB and some reduction function red : KB × BS →
KB∗,

1. the restriction of L to KB∗ is monotonic,

2. for each kb ∈ KB, and all S, S′ ∈ BS:

• red(kb, S) = kb whenever kb ∈ KB∗,

• red(kb, S) ⊆ red(kb, S′) whenever S′ ⊆ S,

• S ∈ ACC(kb) iff ACC(red(kb, S)) = {S }.

42

Then, an evolving contextC = (L, kb, br , OP,mng) is reducible
if its logic L is reducible and, for all op ∈ FOPL and all belief sets S,
red(mng(op, kb), S) = mng(op, red(kb, S)).

An eMCS is reducible if all of its contexts are. Note that a context
is reducible whenever its logic L is monotonic. In this case KB∗

coincides with KB and red is the identity with respect to the first
argument.

As pointed out in [7], reducibility is inspired by the reduct in (non-
monotonic) answer set programming. The crucial and novel condi-
tion in our case is the one that essentially says that the reduction
function red and the management function mng can be applied in
an arbitrary order. This may restrict to some extent the sets of op-
erations OP and mng, but in our use case scenario in Sect. 4, all
contexts are indeed reducible.

A particular case of reducible eMCSs, definite eMCSs, does not
require the reduction function and admits the polynomial computa-
tion of minimal evolving equilibria as we will see next. Namely, a
reducible eMCS Me = 〈C1, . . . , Cn〉 is definite if

1. none of the bridge rules in any context contains not ,

2. for all i and all S ∈ BSi, kbi = red i(kbi, S).

In a definite eMCS, bridge rules are monotonic, and knowledge
bases are already in reduced form. Inference is thus monotonic and
a unique minimal equilibrium exists. We take this equilibrium to be
the grounded equilibrium. Let Me be a definite eMCS. A belief state
S of Me is the grounded equilibrium of Me, denoted by GE(Me),
if S is the unique minimal (static) equilibrium of Me. This notion
gives rise to evolving grounded equilibria.

Definition 8 Let Me = 〈C1, . . . , Cn〉 be a definite eMCS, Se =
〈S1, . . . , Ss〉 an evolving belief state of size s for Me, and Obs =
〈O1, . . . ,Om〉 an observation sequence for Me such that m ≥ s.
Then, Se is the evolving grounded equilibrium of size s of Me given
Obs iff, for each 1 ≤ j ≤ s, Sj is a grounded equilibrium of M j

defined as in Definition 7.

Grounded equilibria for definite eMCSs can indeed be efficiently
computed following [7]. The only additional requirement is that all
operations op ∈ OP are monotonic, i.e., for kb, we have that kb ⊆
mng(op(s), kb). Note that this is indeed a further restriction and not
covered by reducible eMCSs. Now, for 1 ≤ i ≤ n, let kb0i = kbi
and define, for each successor ordinal α+ 1,

kbα+1
i = mng(appnowi (Eα), kbαi),

where Eα = (Eα1 , . . . , E
α
n) and ACCi(kb

α
i) = {Eαi }. Further-

more, for each limit ordinal α, define kbαi =
⋃
β≤α kbβi , and let

kb∞i =
⋃
α>0 kb

α
i . Then Proposition 1 [7] can be adapted:

Proposition 1 Let Me = 〈C1, . . . , Cn〉 be a definite eMCS s.t. all
OPi are monotonic. A belief state S = 〈S1, . . . , Sn〉 is the grounded
equilibrium of Me iff ACCi(kb

∞
i) = {Si}, for 1 ≤ i ≤ n.

As pointed out in [7], for many logics, kb∞i = kbωi holds, i.e., the
iteration stops after finitely many steps. This is indeed the case for
the use case scenario in Sect. 4.

For evolving belief states Se of size s and an observation sequence
Obs for Me, this proposition yields that the evolving grounded equi-
librium for definite eMCSs can be obtained by simply applying this
iteration s times.

Grounded equilibria for general eMCSs are defined based on a
reduct which generalizes the Gelfond-Lifschitz reduct to the multi-
context case:

Definition 9 Let Me = 〈C1, . . . , Cn〉 be a reducible eMCS
and S = 〈S1, . . . , Sn〉 a belief state of Me. The S-
reduct of Me is defined as MS

e = 〈CS1 , . . . , CSn 〉 where,
for each Ci = 〈Li, kbi, br i, OPi,mngi〉, we define CSi =
(Li, red i(kbi, Si), br

S
i , OPi,mngi). Here, brSi results from br i by

deleting all

1. rules with not (r : p) in the body such that S |= (r : p), and

2. not literals from the bodies of remaining rules.

For each reducible eMCS Me and each belief set S, the S-reduct
of Me is definite. We can thus check whether S is a grounded equi-
librium in the usual manner:

Definition 10 Let Me be a reducible eMCS such that all OPi are
monotonic. A belief state S of Me is a grounded equilibrium of Me

if S is the grounded equilibrium of MS
e , that is S = GE(MS

e).

The following result generalizes Proposition 2 from [7].

Proposition 2 Every grounded equilibrium of a reducible eMCSMe

such that all OPi are monotonic is a minimal equilibrium of Me.

This can again be generalized to evolving grounded equilibria.

Definition 11 Let Me = 〈C1, . . . , Cn〉 be a normal, reducible
eMCS such that all OPi are monotonic, Se = 〈S1, . . . , Ss〉 an
evolving belief state of size s for Me, and Obs = 〈O1, . . . ,Om〉
an observation sequence for Me such that m ≥ s. Then, Se is the
evolving grounded equilibrium of size s ofMe givenObs iff, for each
1 ≤ j ≤ s, Sj is the grounded equilibrium of (M j)S

j

with M j de-
fined as in Definition 7.

This computation is still not polynomial, since, intuitively, we
have to guess and check the (evolving) equilibrium, which is why
the well-founded semantics for reducible eMCSs Me is introduced
following [7]. Its definition is based on the operator γMe(S) =
GE(MS

e), provided BSi for each logic Li in all the contexts of
Me has a least element S∗. Such eMCSs are called normal.

The following result can be straightforwardly adopted from [7].

Proposition 3 Let Me = 〈C1, . . . , Cn〉 be a reducible eMCS such
that all OPi are monotonic. Then γMe is antimonotone.

As usual, applying γMe twice yields a monotonic operator. Hence,
by the Knaster-Tarski theorem, (γMe)2 has a least fixpoint which
determines the well-founded semantics.

Definition 12 Let Me = 〈C1, . . . , Cn〉 be a normal, reducible
eMCS such that all OPi are monotonic. The well-founded semantics
of Me, denoted WFS(M), is the least fixpoint of (γMe)2.

Starting with the least belief state S∗ = 〈S∗1 , . . . , S∗n〉, this fix-
point can be iterated, and the following correspondence between
WFS(Me) and the grounded equilibria of Me can be shown.

Proposition 4 Let Me = 〈C1, . . . , Cn〉 be a normal, re-
ducible eMCS such that all OPi are monotonic, WFS(Me) =
〈W1, . . .Wn〉, and S = 〈S1, . . . , Sn〉 a grounded equilibrium of
Me. Then Wi ⊆ Si for 1 ≤ i ≤ n.

The well-founded semantics can thus be viewed as an approxima-
tion of the belief state representing what is accepted in all grounded

43

equilibria, even though WFS(Me) may itself not necessarily be an
equilibrium. Yet, if all ACCi deterministically return one element
of BSi and the eMCS is acyclic (i.e., no cyclic dependencies over
bridge rules exist between beliefs in the eMCS see [19]), then the
grounded equilibrium is unique and identical to the well-founded se-
mantics. This is indeed the case for the use case in Sect. 4.

As before, the well-founded semantics can be generalized to
evolving belief states.

Definition 13 Let Me = 〈C1, . . . , Cn〉 be a normal, reducible
eMCS such that all OPi are monotonic, and Obs = 〈O1, . . . ,Om〉
an observation sequence for Me such that m ≥ s. The evolving
well-founded semantics of Me, denoted WFSe(M), is the evolving
belief state Se = 〈S1, . . . , Ss〉 of size s for Me such that Sj is the
well-founded semantics of M j defined as in Definition 7.

Finally, as intended, we can show that computing the evolving
well-founded semantics of Me can be done in polynomial time un-
der the restrictions established so far. For analyzing the complex-
ity in each time instant, we can utilize output-projected belief states
[11]. The idea is to consider only those beliefs that appear in some
bridge rule body. Formally, given an evolving context Ci within
Me = 〈C1, . . . , Cn〉, we can define OUTi to be the set of all be-
liefs of Ci occurring in the body of some bridge rule in Me. The
output-projection of a belief state S = 〈S1, . . . , Sn〉 of Me is the
belief state S′ = 〈S′1, . . . , S′n〉, S′i = Si ∩OUTi, for 1 ≤ i ≤ n.

Following [11, 8], we can adapt the context complexity of Ci from
[19] as the complexity of the following problem:

(CC) Decide, given Opi ⊆ OFi and S′i ⊆ OUTi, if exist kb′i =
mngi(Opi, kbi) and Si ∈ ACCi(kb

′
i) s.t. S′i = Si ∩OUTi.

Problem (CC) can intuitively be divided into two subproblems:
(MC) compute some kb′i = mngi(Opi, kbi) and (EC) decide
whether Si ∈ ACC(kb′i) exists s.t. S′i = Si∩OUTi. Here, (MC) is
trivial for monotonic operations, so (EC) determines the complexity
of (CC).

Theorem 1 Let Me = 〈C1, . . . , Cn〉 be a normal, reducible eMCS
such that all OPi are monotonic, Obs = 〈O1, . . . ,Om〉 an obser-
vation sequence for Me, and (CC) is in PTIME for all Ci. Then, for
s ≤ m, computing WFSse(Me) is in PTIME.

This, together with the observation that WFSe(Me) coincides with
the unique grounded equilibrium, allows us to verify that computing
the results in our use case scenario can be done in polynomial time.

6 Related and Future Work
In this paper we have studied how eMCSs can be revised in such a
way that polynomial reasoning is possible, and we have discussed an
example use case to which this result applies. We have also investi-
gated the adaptation of notions concerning minimality of (evolving)
equilibria, and we observe that the notion of reducible eMCSs is con-
siderably restricted, but not to the same extent as the efficient com-
putation of the well-founded semantics requires. An open question
is whether a more refined computation eventually tailored to less re-
strictive operations than considered here can be used to achieve sim-
ilar results.

As mentioned in the Introduction, eMCSs share the main ideas of
reactive Multi-Context Systems sketched in [6, 12, 9] inasmuch as
both aim at extending mMCSs to cope with dynamic observations.
Three main differences distinguish them. First, whereas eMCSs rely

on a sequence of observations, each independent from the previous
ones, rMCSs encode such sequences within the same observation
contexts, with its elements being explicitly timestamped. This means
that with rMCSs it is perhaps easier to write bridge rules that refer,
e.g., to specific sequences of observations, which in eMCSs would
require explicit timestamps and storing the observations in some con-
text, although at the cost that rMCSs need to deal with explicit time
which adds an additional overhead. Second, since in rMCSs the con-
texts resulting from the application of the management operations are
the ones that are used in the subsequent state, difficulties may arise in
separating non-persistent and persistent effects, for example, allow-
ing an observation to override some fact in some context while the
observation holds, but without changing the context itself – such sep-
aration is easily encodable in eMCSs given the two kinds of bridge
rules, i.e., with or without operator next. Finally, bridge rules with
next allow for the specification of transitions based on the current
state, such as the one encoded by the rule next(add(p)) ← not p,
which do not seem possible in rMCSs. Overall, these differences in-
dicate that an interesting future direction would be to merge both
approaches, exploring a combination of explicitly timestamped ob-
servations with the expressiveness provided by operator next.

Another framework that aims at modeling the dynamics of knowl-
edge is that of evolving logic programs EVOLP [2] focusing on
updates of generalized logic programs. It is possible to show that
EVOLP can be seen as a particular case of eMCSs, using the operator
next to capture the operator assert of EVOLP. We leave the details
for an extended version. Closely related to EVOLP, hence to eMCS,
are the two frameworks of reactive ASP, one implemented as a solver
clingo [14] and one described in [6]. The system oclingo extends an
ASP solver for handling external modules provided at runtime by a
controller. The output of these external modules can be seen as the
observations of EVOLP. Unlike the observations in EVOLP, which
can be rules, external modules in oclingo are restricted to produce
atoms so the evolving capabilities are very restricted. On the other
hand, clingo permits committing to a specific answer-set at each
state, a feature that is not part of EVOLP, nor of eMCS. Reactive ASP
as described in [6] can be seen as a more straightforward generaliza-
tion of EVOLP where operations other than assert for self-updating
a program are permitted. Given the above mentioned embedding of
EVOLP in eMCS, and the fact that eMCSs permit several (evolution)
operations in the head of bridge rules, it is also not difficult to show
that Reactive ASP as described in [6] can be captured by eMCSs.

Also, as already outlined in [20], an important non-trivial topic is
the study of the notion of minimal change within an evolving equi-
librium. Whereas minimal change may be desirable to obtain more
coherent evolving equilibria, there are also arguments against adopt-
ing a one-size-fits-all approach embedded in the semantics. Different
contexts, i.e., KR formalisms, may require different notions of min-
imal change, or even require to avoid it – e.g., suppose we want to
represent some variable that can non-deterministically takes one of
two values at each time instant: minimal change could force a con-
stant value.

Another important issue open for future work is a more fine-
grained characterization of updating bridge rules (and knowledge
bases) as studied in [18] in light of the encountered difficulties when
updating rules [28, 29, 31] and the combination of updates over var-
ious formalisms [29, 30].

Also interesting is to study how to perform AGM style belief re-
vision at the (semantic) level of the equilibria, as in Wang et al [33],
though different since knowledge is not incorporated in the contexts.

44

ACKNOWLEDGEMENTS
We would like to thank the referees for their comments, which
helped improve this paper considerably. Matthias Knorr and João
Leite were partially supported by FCT under project “ERRO
– Efficient Reasoning with Rules and Ontologies” (PTDC/EIA-
CCO/121823/2010). Ricardo Gonçalves was supported by FCT grant
SFRH/BPD/47245/2008 and Matthias Knorr was also partially sup-
ported by FCT grant SFRH/BPD/86970/2012.

REFERENCES
[1] M. Alberti, A. S. Gomes, R. Gonçalves, J. Leite, and M. Slota, ‘Norma-

tive systems represented as hybrid knowledge bases’, in CLIMA, eds.,
J. Leite, P. Torroni, T. Ågotnes, G. Boella, and L. van der Torre, volume
6814 of LNCS, pp. 330–346. Springer, (2011).

[2] J. Alferes, A. Brogi, J. Leite, and L. Pereira, ‘Evolving logic programs’,
in JELIA, eds., S. Flesca, S. Greco, N. Leone, and G. Ianni, volume
2424 of LNCS, pp. 50–61. Springer, (2002).

[3] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, ‘Stream reasoning
and complex event processing in ETALIS’, Semantic Web, 3(4), 397–
407, (2012).

[4] Franz Baader, Sebastian Brandt, and Carsten Lutz, ‘Pushing the el en-
velope’, in IJCAI, eds., Leslie Pack Kaelbling and Alessandro Saffiotti,
pp. 364–369. Professional Book Center, (2005).

[5] D. Barbieri, D. Braga, S. Ceri, E. Valle, and M. Grossniklaus, ‘C-
SPARQL: a continuous query language for RDF data streams’, Int. J.
Semantic Computing, 4(1), 3–25, (2010).

[6] G. Brewka, ‘Towards reactive multi-context systems’, in LPNMR, eds.,
P. Cabalar and T. C. Son, volume 8148 of LNCS, pp. 1–10. Springer,
(2013).

[7] G. Brewka and T. Eiter, ‘Equilibria in heterogeneous nonmonotonic
multi-context systems’, in AAAI, pp. 385–390. AAAI Press, (2007).

[8] G. Brewka, T. Eiter, M. Fink, and A. Weinzierl, ‘Managed multi-context
systems’, in IJCAI, ed., T. Walsh, pp. 786–791. IJCAI/AAAI, (2011).

[9] G. Brewka, S. Ellmauthaler, and J. Pührer, ‘Multi-context systems for
reactive reasoning in dynamic environments’, in ECAI, eds., T. Schaub,
G. Friedrich, and B. O’Sullivan. IOS Press, (2014). To appear.

[10] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov,
‘Complexity and expressive power of logic programming’, ACM Com-
put. Surv., 33(3), 374–425, (2001).

[11] T. Eiter, M. Fink, P. Schüller, and A. Weinzierl, ‘Finding explanations
of inconsistency in multi-context systems’, in KR, eds., F. Lin, U. Sat-
tler, and M. Truszczynski. AAAI Press, (2010).

[12] S. Ellmauthaler, ‘Generalizing multi-context systems for reactive
stream reasoning applications’, in ICCSW, eds., A. V. Jones and N. Ng,
volume 35 of OASICS, pp. 19–26. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, (2013).

[13] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and
T. Schaub, ‘Stream reasoning with answer set programming: Prelimi-
nary report’, in KR, eds., G Brewka, T. Eiter, and S. A. McIlraith. AAAI
Press, (2012).

[14] M. Gebser, T. Grote, R. Kaminski, and T. Schaub, ‘Reactive answer set
programming’, in LPNMR, eds., J. P. Delgrande and W. Faber, volume
6645 of LNCS, pp. 54–66. Springer, (2011).

[15] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf, ‘The well-
founded semantics for general logic programs’, J. ACM, 38(3), 620–
650, (1991).

[16] F. Giunchiglia and L. Serafini, ‘Multilanguage hierarchical logics or:
How we can do without modal logics’, Artif. Intell., 65(1), 29–70,
(1994).

[17] R. Gonçalves and J. Alferes, ‘Parametrized logic programming’, in
JELIA, eds., T. Janhunen and I. Niemelä, volume 6341 of LNCS, pp.
182–194. Springer, (2010).

[18] R. Gonçalves, M. Knorr, and J. Leite, ‘Evolving bridge rules in evolv-
ing multi-context systems’, in CLIMA XV, eds., N. Bulling, L. van der
Torre, S. Villata, W. Jamroga, and W. Vasconcelos, (2014). To appear.

[19] R. Gonçalves, M. Knorr, and J. Leite, ‘Evolving multi-context systems’,
in ECAI, eds., T. Schaub, G. Friedrich, and B. O’Sullivan. IOS Press,
(2014). To appear.

[20] R. Gonçalves, M. Knorr, and J. Leite, ‘On minimal change in evolv-
ing multi-context systems (preliminary report)’, in ReactKnow 2014,
(2014). To appear.

[21] M. Homola, M. Knorr, J. Leite, and M. Slota, ‘MKNF knowledge bases
in multi-context systems’, in CLIMA, eds., M. Fisher, L. van der Torre,
M. Dastani, and G. Governatori, volume 7486 of LNCS, pp. 146–162.
Springer, (2012).

[22] V. Ivanov, M. Knorr, and J. Leite, ‘A query tool for EL with non-
monotonic rules’, in ISWC, eds., H. Alani, L. Kagal, A. Fokoue, P. T.
Groth, C. Biemann, J. Parreira, L. Aroyo, N. F. Noy, C. Welty, and
K. Janowicz, volume 8218 of LNCS, pp. 216–231. Springer, (2013).

[23] M. Knorr, J. Alferes, and P. Hitzler, ‘Local closed world reasoning
with description logics under the well-founded semantics’, Artif. Intell.,
175(9-10), 1528–1554, (2011).

[24] M. Knorr, M. Slota, J. Leite, and M. Homola, ‘What if no hybrid rea-
soner is available? Hybrid MKNF in multi-context systems’, J. Log.
Comput., (2013).

[25] F. Lécué and J. Pan, ‘Predicting knowledge in an ontology stream’, in
IJCAI, ed., F. Rossi. IJCAI/AAAI, (2013).

[26] B. Motik and R. Rosati, ‘Reconciling description logics and rules’, J.
ACM, 57(5), (2010).

[27] F. Roelofsen and L. Serafini, ‘Minimal and absent information in con-
texts’, in IJCAI, eds., L. Kaelbling and A. Saffiotti, pp. 558–563. Pro-
fessional Book Center, (2005).

[28] M. Slota and J. Leite, ‘On semantic update operators for answer-set
programs’, in ECAI, eds., H. Coelho, R. Studer, and M. Wooldridge,
volume 215 of Frontiers in Artificial Intelligence and Applications, pp.
957–962. IOS Press, (2010).

[29] M. Slota and J. Leite, ‘Robust equivalence models for semantic updates
of answer-set programs’, in KR, eds., G. Brewka, T. Eiter, and S. A.
McIlraith. AAAI Press, (2012).

[30] M. Slota and J. Leite, ‘A unifying perspective on knowledge updates’,
in JELIA, eds., L. del Cerro, A. Herzig, and J. Mengin, volume 7519 of
LNCS, pp. 372–384. Springer, (2012).

[31] M. Slota and J. Leite, ‘The rise and fall of semantic rule updates based
on SE-models’, TPLP, (2014). To appear.

[32] Martin Slota, João Leite, and Terrance Swift, ‘Splitting and updating
hybrid knowledge bases’, TPLP, 11(4-5), 801–819, (2011).

[33] Y. Wang, Z. Zhuang, and K. Wang, ‘Belief change in nonmonotonic
multi-context systems’, in LPNMR, eds., P. Cabalar and T. C. Son, vol-
ume 8148 of LNCS, pp. 543–555. Springer, (2013).

45

On Minimal Change in Evolving Multi-Context Systems
(Preliminary Report)

Ricardo Gonçalves and Matthias Knorr and João Leite 1

Abstract. Managed Multi-Context Systems (mMCSs) provide a
general framework for integrating knowledge represented in hetero-
geneous KR formalisms. However, mMCSs are essentially static as
they were not designed to run in a dynamic scenario. Some recent
approaches, among them evolving Multi-Context Systems (eMCSs),
extend mMCSs by allowing not only the ability to integrate knowl-
edge represented in heterogeneous KR formalisms, but at the same
time to both react to, and reason in the presence of commonly tempo-
rary dynamic observations, and evolve by incorporating new knowl-
edge. The notion of minimal change is a central notion in dynamic
scenarios, specially in those that admit several possible alternative
evolutions. Since eMCSs combine heterogeneous KR formalisms,
each of which may require different notions of minimal change, the
study of minimal change in eMCSs is an interesting and highly non-
trivial problem. In this paper, we study the notion of minimal change
in eMCSs, and discuss some alternative minimal change criteria.

1 Introduction

Multi-Context Systems (MCSs) were introduced in [6], building on
the work in [12, 23], to address the need for a general framework
that integrates knowledge bases expressed in heterogeneous KR for-
malisms. Intuitively, instead of designing a unifying language (see
e.g., [13, 22], and [19] with its reasoner NoHR [18]) to which other
languages could be translated, in an MCS the different formalisms
and knowledge bases are considered as modules, and means are pro-
vided to model the flow of information between them (cf. [1, 17, 20]
and references therein for further motivation on hybrid languages and
their connection to MCSs).

More specifically, an MCS consists of a set of contexts, each of
which is a knowledge base in some KR formalism, such that each
context can access information from the other contexts using so-
called bridge rules. Such non-monotonic bridge rules add their heads
to the context’s knowledge base provided the queries (to other con-
texts) in their bodies are successful.

Managed Multi-Context Systems (mMCSs) were introduced in [7]
to provide an extension of MCSs by allowing operations, other than
simple addition, to be expressed in the heads of bridge rules. This al-
lows mMCSs to properly deal with the problem of consistency man-
agement within contexts.

One recent challenge for KR languages is to shift from static appli-
cation scenarios which assume a one-shot computation, usually trig-
gered by a user query, to open and dynamic scenarios where there is
a need to react and evolve in the presence of incoming information.

1 CENTRIA & Departamento de Informática, Faculdade Ciências e Tecnolo-
gia, Universidade Nova de Lisboa, email: rjrg@fct.unl.pt

Examples include EVOLP [2], Reactive ASP [11, 10], C-SPARQL
[4], Ontology Streams [21] and ETALIS [3], to name only a few.

Whereas mMCSs are quite general and flexible to address the
problem of integration of different KR formalisms, they are essen-
tially static in the sense that the contexts do not evolve to incorporate
the changes in the dynamic scenarios.

In such scenarios, new knowledge and information is dynamically
produced, often from several different sources – for example a stream
of raw data produced by some sensors, new ontological axioms writ-
ten by some user, newly found exceptions to some general rule, etc.

To address this issue, two recent frameworks, evolving Multi-
Context Systems (eMCSs) [15] and reactive Multi-Context Systems
(rMCSs) [5, 9, 8] have been proposed sharing the broad motivation of
designing general and flexible frameworks inheriting from mMCSs
the ability to integrate and manage knowledge represented in hetero-
geneous KR formalisms, and at the same time be able to incorporate
knowledge obtained from dynamic observations.

In such dynamic scenarios, where systems can have alternative
evolutions, it is desirable to have some criteria of minimal change
to be able to compare the possible alternatives. This problem is par-
ticularly interesting and non-trivial in dynamic frameworks based on
MCSs, not only because of the heterogeneity of KR frameworks that
may exist in an MCS – each of which may require different notions
of minimal change –, but also because the evolution of such systems
is based not only on the semantics, but also on the evolution of the
knowledge base of each context.

In this paper, we study minimal change in eMCSs, by presenting
some minimal change criteria to be applied to the possible evolving
equilibria of an eMCS, and by discussing the relation between them.

The remainder of this paper is structured as follows. After present-
ing the main concepts regarding mMCSs, we introduce the frame-
work of eMCSs. Then, we present and study some minimal change
criteria in eMCSs. We conclude with discussing related work and
possible future directions.

2 Multi-Context Systems

In this section, we introduce the framework of multi-context systems
(MCSs). Following [6], a multi-context system (MCS) consists of
a collection of components, each of which contains knowledge rep-
resented in some logic, defined as a triple L = 〈KB,BS,ACC〉
where KB is the set of well-formed knowledge bases of L, BS is
the set of possible belief sets, and ACC : KB→ 2BS is a function
describing the semantics of L by assigning to each knowledge base
a set of acceptable belief sets. We assume that each element of KB
and BS is a set, and we define F = {s : s ∈ kb ∧ kb ∈ KB}.

In addition to the knowledge base in each component, bridge rules

47

are used to interconnect the components, specifying what knowl-
edge to assert in one component given certain beliefs held in the
components of the MCS. Formally, for a sequence of logics L =
〈L1, . . . , Ln〉, an Li-bridge rule σ over L, 1 ≤ i ≤ n, is of the form

H(σ)← B(σ) (1)

where B(σ) is a set of bridge literals of the form (r : b) and of the
form not (r : b), 1 ≤ r ≤ n, with b a belief formula of Lr , and, for
each kb ∈ KBi, kb ∪ {H(σ)} ∈ KBi.

Bridge rules in MCSs only allow adding information to the knowl-
edge base of their corresponding context. Note that the condition
kb ∪ {H(σ)} ∈ KBi precisely guarantees that the resulting set is
still a knowledge base of the context. In [7], an extension, called
managed Multi-Context Systems (mMCSs), is introduced in order to
allow other types of operations to be performed on a knowledge base.
For that purpose, each context of an mMCS is associated with a man-
agement base, which is a set of operations that can be applied to the
possible knowledge bases of that context. Given a management base
OP and a logic L, let OF = {op(s) : op ∈ OP ∧ s ∈ F} be the set
of operational formulas that can be built from OP and L. Each con-
text of an mMCS gives semantics to operations in its management
base using a management function over a logic L and a management
base OP , mng : 2OF ×KB→ (2KB \ {∅}), i.e., mng(op, kb) is
the (non-empty) set of possible knowledge bases that result from ap-
plying the operations in op to the knowledge base kb. We assume that
mng(∅, kb) = {kb}. Now, Li-bridge rules for mMCSs are defined
in the same way as for MCSs, except thatH(σ) is now an operational
formula over OPi and Li.

Definition 1 A managed Multi-Context System (mMCS) is a se-
quence M = 〈C1, . . . , Cn〉, where each Ci, i ∈ {1, . . . , n}, called
a managed context, is defined as Ci = 〈Li, kbi, br i, OPi,mngi〉
where Li = 〈KBi,BSi,ACCi〉 is a logic, kbi ∈ KBi, br i is a
set of Li-bridge rules, OPi is a management base, mngi is a man-
agement function over Li and OPi.

Note that, for the sake of readability, we consider a slightly re-
stricted version of mMCSs where each ACCi is still a function and
not a set of functions as for logic suites [7].

For an mMCS M = 〈C1, . . . , Cn〉, a belief state of M is a se-
quence S = 〈S1, . . . , Sn〉 such that each Si is an element of BSi.
For a bridge literal (r : b), S |= (r : b) if b ∈ Sr and S |= not (r :
b) if b /∈ Sr; for a set of bridge literalsB, S |= B if S |= L for every
L ∈ B. We say that a bridge rule σ of a context Ci is applicable
given a belief state S of M if S satisfies B(σ). We can then define
appi(S), the set of heads of bridge rules of Ci which are applicable
in S, by setting appi(S) = {H(σ) : σ ∈ br i ∧ S |= B(σ)}.

Equilibria are belief states that simultaneously assign an accept-
able belief set to each context in the mMCS such that the applicable
operational formulas in bridge rule heads are taken into account.

Definition 2 A belief state S = 〈S1, . . . , Sn〉 of an mMCS M is an
equilibrium of M if, for every 1 ≤ i ≤ n,

Si ∈ ACCi(kb) for some kb ∈ mngi(appi(S), kbi).

3 Evolving Multi-Context Systems
In this section, we recall evolving Multi-Context Systems, which
generalize mMCSs to a dynamic scenario in which contexts are
enabled to react to external observations and evolve. For that pur-
pose, we consider that some of the contexts in the MCS become

so-called observation contexts whose knowledge bases will be con-
stantly changing over time according to the observations made, sim-
ilar, e.g., to streams of data from sensors.2

The changing observations then will also affect the other contexts
by means of the bridge rules. As we will see, such effect can either
be instantaneous and temporary, i.e., limited to the current time in-
stant, similar to (static) mMCSs, where the body of a bridge rule is
evaluated in a state that already includes the effects of the operation
in its head, or persistent, but only affecting the next time instant. To
achieve the latter, we extend the operational language with a unary
meta-operation next that can only be applied on top of operations.

Definition 3 Given a management baseOP and a logicL, we define
eOF , the evolving operational language, as

eOF = OF ∪ {next(op(s)) : op(s) ∈ OF}.

The idea of observation contexts is that each such context has a
language describing the set of possible observations of that context,
along with its current observation. The elements of the language of
the observation contexts can then be used in the body of bridge rules
to allow contexts to access the observations. Formally, an observa-
tion context is a tuple O = 〈ΠO, π〉 where ΠO is the observation
language of O and π ⊆ ΠO is its current observation.

We can now define evolving Multi-Context Systems.

Definition 4 An evolving Multi-Context Systems (eMCS) is a se-
quence Me = 〈C1, . . . , Cn, O1, . . . , O`〉, such that, for each i ∈
{1, . . . , `}, Oi = 〈ΠOi , πi〉 is an observation context, and, for
each i ∈ {1, . . . , n}, Ci is an evolving context defined as Ci =
〈Li, kbi, br i, OPi,mngi〉 where

• Li = 〈KBi,BSi,ACCi〉 is a logic

• kbi ∈ KBi

• br i is a set of bridge rules of the form

H(σ)← a1, . . . , ak,not ak+1, . . . ,not an (2)

such that H(σ) ∈ eOFi, and each ai, i ∈ {1, . . . , n}, is either of
the form (r : b) with r ∈ {1, . . . , n} and b a belief formula of Lr ,
or of the form (r@b) with r ∈ {1, . . . , `} and b ∈ ΠOr

• OPi is a management base

• mngi is a management function over Li and OPi.

Given an eMCS Me = 〈C1, . . . , Cn, O1, . . . , O`〉 we denote
by KBMe the set of knowledge base configurations for Me, i.e.,
KBMe = {〈k1, . . . , kn〉 : ki ∈ KBi for each 1 ≤ i ≤ n}.

Definition 5 Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS. A
belief state for Me is a sequence S = 〈S1, . . . , Sn〉 such that, for
each 1 ≤ i ≤ n, we have Si ∈ BSi. We denote by BSMe the set of
belief states for Me.

An instant observation for Me is a sequence O = 〈o1, . . . , o`〉
such that, for each 1 ≤ i ≤ `, we have that oi ⊆ ΠOi .

The notion appi(S) of the set of heads of bridge rules ofCi which
are applicable in a belief state S, cannot be directly transferred from
mMCSs to eMCSs since bridge rule bodies can now contain atoms
of the form (r@b), whose satisfaction depends on the current obser-
vation. Formally, given a belief state S = 〈S1, . . . , Sn〉 for Me and

2 For simplicity of presentation, we consider discrete steps in time here.

48

an instant observation O = 〈o1, . . . , o`〉 for Me, we define the sat-
isfaction of bridge literals of the form (r : b) as S,O |= (r : b) if
b ∈ Sr and S,O |= not (r : b) if b /∈ Sr . The satisfaction of bridge
literal of the form (r@b) depends on the current observations, i.e.,
we have that S,O |= (r@b) if b ∈ or and S |= not (r@b) if b /∈ or .
As before, for a set B of bridge literals, we have that S,O |= B if
S,O |= L for every L ∈ B.

We say that a bridge rule σ of a context Ci is applicable given a
belief state S and an instant observation O if its body is satisfied by
S and O, i.e., S,O |= B(σ).

We denote by appi(S,O) the set of heads of bridges rules of the
context Ci which are applicable given the belief state S and the in-
stant observation O. In the case of eMCSs, the set appi(S,O) may
contain two types of formulas: those that contain next and those that
do not. As already mentioned before, the former are to be applied to
the current knowledge base and not persist, whereas the latter are to
be applied in the next time instant and persist.

Definition 6 Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS, S
a belief state for Me, and O an instant observation for Me. Then,
for each 1 ≤ i ≤ n, consider the following sets:

• appnext
i (S,O) = {op(s) : next(op(s)) ∈ appi(S,O)}

• appnow
i (S,O) = {op(s) : op(s) ∈ appi(S,O)}

Note that if we want an effect to be instantaneous and persistent,
then this can also be achieved using two bridge rules with identical
body, one with and one without next in the head.

Similar to equilibria in mMCS, the (static) equilibrium is defined
to incorporate instantaneous effects based on appnow

i (S,O) alone.

Definition 7 Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS,
and O an instant observation for Me. A belief state S =
〈S1, . . . , Sn〉 for Me is an equilibrium of Me given O iff for each
1 ≤ i ≤ n, there exists some kb ∈ mngi(appnow

i (S,O), kbi) such
that Si ∈ ACCi(kb).

To be able to assign meaning to an eMCS evolving over time, we
introduce evolving belief states, which are sequences of belief states,
each referring to a subsequent time instant.

Definition 8 Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS.
An evolving belief state of size s for Me is a sequence Se =
〈S1, . . . , Ss〉 where each Sj , 1 ≤ j ≤ s, is a belief state for Me.

To enable an eMCS to react to incoming observations and evolve,
a sequence of observations defined in the following has to be pro-
cessed. The idea is that the knowledge bases of the observation con-
texts Oi change according to that sequence.

Definition 9 Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS.
A sequence of observations for Me is a sequence Obs =
〈O1, . . . ,Om〉, such that, for each 1 ≤ j ≤ m, Oj = 〈oj1, . . . , oj`〉
is an instant observation for Me, i.e., oji ⊆ ΠOi for each 1 ≤ i ≤ `.

To be able to update the knowledge bases and the sets of bridge
rules of the evolving contexts, we need the following notation. Given
an evolving context Ci, and a knowledge base k ∈ KBi, we denote
by Ci[k] the evolving context in which kbi is replaced by k, i.e.,
Ci[k] = 〈Li, k, bri, OPi,mngi〉. For an observation context Oi,
given a set π ⊆ ΠOi of observations for Oi, we denote by Oi[π]
the observation context in which its current observation is replaced

by π, i.e., Oi[π] = 〈ΠOi , π〉. Given K = 〈k1, . . . , kn〉 ∈ KBMe

a knowledge base configuration for Me, we denote by Me[K] the
eMCS 〈C1[k1], . . . , Cn[kn], O1, . . . , O`〉.

We can now define that certain evolving belief states are evolving
equilibria of an Me = 〈C1, . . . , Cn, O1, . . . , O`〉 given a sequence
of observations Obs = 〈O1, . . . ,Om〉 for Me. The intuitive idea
is that, given an evolving belief state Se = 〈S1, . . . , Ss〉 for Me,
in order to check if Se is an evolving equilibrium, we need to con-
sider a sequence of eMCSs, M1, . . . ,Ms (each with ` observation
contexts), representing a possible evolution of Me according to the
observations in Obs, such that each Sj is a (static) equilibrium of
M j . The current observation of each observation context Oi in M j

is exactly its corresponding element oji inOj . For each evolving con-
text Ci, its knowledge base in M j is obtained from the one in M j−1

by applying the operations in appnext
i (Sj−1,Oj−1).

Definition 10 Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS,
Se = 〈S1, . . . , Ss〉 an evolving belief state of size s for Me, and
Obs = 〈O1, . . . ,Om〉 an observation sequence for Me such that
m ≥ s. Then, Se is an evolving equilibrium of size s of Me

given Obs iff, for each 1 ≤ j ≤ s, Sj is an equilibrium of
M j = 〈C1[kj1], . . . , Cn[kjn], O1[oj1], . . . , O`[o

j
`]〉 where, for each

1 ≤ i ≤ n, kji is defined inductively as follows:

• k1i = kbi

• kj+1
i ∈ mngi(appnext(Sj ,Oj

i), kji).

We end this section by presenting a proposition about evolving
equilibria that will be useful in the next section. In Def. 10, the num-
ber of considered time instances of observationsm is greater or equal
the size of the evolving belief state with the intuition that an equilib-
rium may also be defined for only a part of the observation sequence.
An immediate consequence is that any subsequence of an evolving
equilibrium is an evolving equilibrium.

Proposition 1 Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS
andObs = 〈O1, . . . ,Om〉 an observation sequence forMe. If Se =
〈S1, . . . , Ss〉 is an evolving equilibrium of size s of Me given Obs,
then, for each 1 ≤ j ≤ s, and every j ≤ k ≤ m, we have that
〈S1, . . . , Sj〉 is an evolving equilibrium of size j of Me given the
observation sequence 〈O1, . . . ,Ok〉.

4 Minimal change
In this section, we discuss some alternatives for the notion of minimal
change in eMCSs. What makes this problem interesting is that in an
eMCS there are different parameters that we may want to minimize
in a transition from one time instant to the next one. In the following
discussion we focus on two we deem most relevant: the operations
that can be applied to the knowledge bases, and the distance between
consecutive belief states.

We start by studying minimal change at the level of the op-
erations. In the following discussion we consider fixed an eMCS
Me = 〈C1, . . . , Cn, O1, . . . , O`〉.

Recall from the definition of evolving equilibrium that, in the
transition between consecutive time instants, the knowledge base
of each context Ci of Me changes according to the operations in
appnext

i (S,O), and these depend on the belief state S and the in-
stant observationO. The first idea to compare elements of this set of
operations is to, for a fixed instant observation O, distinguish those
equilibria ofMe which generate a minimal set of operations to be ap-
plied to the current knowledge bases to obtain the knowledge bases

49

of the next time instant. Formally, given a knowledge base configu-
ration K ∈ KBMe and an instant observation O for Me, we can
define the set:

MinEq(K,O) = {S : S is an equilibrium of Me[K] given O
and there is no equilibrium S′ of Me[K] given O
such that, for all i ∈ {1, . . . , n} we have

appnext
i (S′,O) ⊂ appnext

i (S,O)}

This first idea of comparing equilibria based on inclusion of the
sets of operations can, however, be too strict in most cases. Moreover,
different operations usually have different costs, and it may well be
that, instead of minimizing based on set inclusion, we want to mini-
mize the total cost of the operations to be applied. For that, we need
to assume that each context has a cost function over the set of opera-
tions, i.e., costi : OPi → N, where costi(op) represents the cost of
performing operation op.

Let S be a belief state for Me and O an instant observation for
Me. Then, for each 1 ≤ i ≤ n, we define the cost of the operations
to be applied to obtain the knowledge base of the next time instant
as:

Costi(S,O) =
∑

op(s)∈appnext
i (S,O)

costi(op)

Summing up the cost for all evolving contexts, we obtain the
global cost of S given O:

Cost(S,O) =
n∑

i=1

Costi(S,O)

Now that we have defined a cost function over belief states, we
can define a minimization function over possible equilibria of eMCS
Me[K] for a fixed knowledge base configuration K ∈ KBMe . For-
mally, given O an instant observation for Me, we define the set of
equilibria of Me[K] given O which minimize the global cost of the
operations to be applied to obtain the knowledge base configuration
of the next time instant as:

MinCost(K,O) ={S : S is an equilibrium of Me[K] given O and

there is no equilibrium S′ of Me[K] given O
such that Cost(S′,O) < Cost(S,O)}

Note that, instead of using a global cost, we could have also con-
sidered a more fine-grained criterion by comparing costs for each
context individually, and define some order based on these compar-
isons. Also note that the particular case of taking costi(op) = 1 for
every i ∈ {1, . . . , n} and every op ∈ OPi, captures the scenario of
minimizing the total number of operations to be applied.

The function MinCost allows for the choice of those equilibria
which are minimal with respect to the operations to be performed
to the current knowledge base configuration in order to obtain the
knowledge base configuration of the next time instant. Still, for each
choice of an equilibrium S, we have to deal with the existence of
several alternatives in the set mngi(appnext

i (S,O), kbi). Our aim
now is to discuss how we can apply some notion of minimal change
that allows us to compare the elements mngi(appnext

i (S,O), kbi).
The intuitive idea is to compare the distance between the current
equilibria and the possible equilibria resulting from the elements
in mngi(appnext

i (S,O), kbi). Of course, given the possible hetero-
geneity of contexts in an eMCS, we cannot assume a global notion of

distance between belief sets. Therefore, we assume that each evolv-
ing context has its own distance function between its beliefs sets.
Formally, for each 1 ≤ i ≤ n, we assume the existence of a dis-
tance function di, i.e., di : BSi × BSi → R satisfying for all
S1, S2, S3 ∈ BSi the conditions:

1. di(S1, S2) ≥ 0

2. di(S1, S2) = 0 iff S1 = S2

3. di(S1, S2) = di(S2, S1)

4. di(S1, S3) ≤ di(S1, S2) + di(S2, S3)

There are some alternatives to extend the distance function of each
context to a distance function between belief states. In the follow-
ing we present two natural choices. One option is to consider the
maximal distance between belief sets of each context. Another pos-
sibility is to consider the average of distances between belief sets
of each context. Formally, given S1 and S2 two belief states of
Me we define two functions dmax : BSMe × BSMe → R and
davg : BSMe ×BSMe → R as follows:

dmax(S
1, S2) = Max{di(S1

i , S
2
i) | 1 ≤ i ≤ n}

davg(S
1, S2) =

∑n
i=1 di(S

1
i , S

2
i)

n

We can easily prove that both dmax and davg are indeed distance
functions between belief states.

Proposition 2 The functions dmax and davg defined above are both
distance functions, i.e., satisfy the axioms (1- 4).

We now study how we can use one of these distance functions
between belief states to compare the possible alternatives in the
sets mngi(appnext

i (S,O), kbi), for each 1 ≤ i ≤ n. Recall
that the intuitive idea is to minimize the distance between the cur-
rent belief state S and the possible equilibria that each element
of mngi(appnext

i (S,O), kbi) can give rise to. We explore here
two options, which differ on whether the minimization is global
or local. The idea of global minimization is to choose only those
knowledge base configurations 〈k1, . . . , kn〉 ∈ KBMe with ki ∈
mngi(app

next
i (S,O), kbi), which guarantee minimal distance be-

tween the original belief state S and the possible equilibria of the
obtained eMCS. The idea of local minimization is to consider all
possible tuples 〈k1, . . . , kn〉 with ki ∈ mngi(appnext

i (S,O), kbi),
and only apply minimization for each such choice, i.e., for each such
knowledge base configuration we only allow equilibria with minimal
distance from the original belief state.

We first consider the case of pruning those tuples 〈k1, . . . , kn〉
with ki ∈ mngi(app

next
i (S,O), kbi) which do not guarantee

minimal change with respect to the original belief state. We start
with an auxiliary function. Let S be a belief state for Me, K =
〈k1, . . . , kn〉 ∈ KBMe a knowledge base configuration for Me, and
O = 〈o1, . . . , o`〉 an instant observation forMe. Then we can define
the set of knowledge base configurations that are obtained from K
given the belief state S and the instant observation O.

NextKB(S,O, 〈k1, . . . , kn〉) ={〈k′1, . . . , k′n〉 ∈ KBMe :

for each 1 ≤ i ≤ n, we have that

k′i ∈ mngi(appnext
i (S,O), ki)}

For each choice d of a distance function between belief states, we
can define the set of knowledge base configurations which give rise

50

to equilibria ofMe which minimize the distance to the original belief
state. Let S be a belief state for Me, K = 〈k1, . . . , kn〉 ∈ KBMe

a knowledge base configuration for Me, and Oj and Oj+1 instant
observations for Me.

MinNext(S,Oj ,Oj+1,K) = {(S′,K′) :

K′ ∈ NextKB(S,Oj ,K) and

S′ ∈MinCost(Me[K′],Oj+1)

such that there is no

K′′ ∈ NextKB(S,Oj ,K) and no

S′′ ∈MinCost(Me[K′′],Oj+1)

with d(S, S′′) < d(S, S′)}.

Again note that MinNext applies minimization over all possible
equilibria resulting from every element ofNextKB(S,Oj ,K). Us-
ing MinNext, we can now define a minimal change criterion to be
applied to evolving equilibria of Me.

Definition 11 Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS,
Obs = 〈O1, . . . , Om〉 an observation sequence for Me, and let
Se = 〈S1, . . . , Ss〉 be an evolving equilibrium of Me given Obs.
We assume that 〈K1, . . . ,Ks〉, with Kj = 〈kj1, . . . , kjn〉, is the se-
quence of knowledge base configurations associated with Se as in
Definition 10. Then, Se satisfies the strong minimal change criterion
for Me given Obs if, for each 1 ≤ j ≤ s, the following conditions
are satisfied:

• Sj ∈MinCost(Me[Kj],Oj)

• (Sj+1,Kj+1) ∈MinNext(Sj ,Oj ,Oj+1,Kj)

We call this minimal change criterion the strong minimal change
criterion because it applies minimization over all possible equilib-
ria resulting from every possible knowledge base configuration in
NextKB(S,Oj ,K).

The following proposition states the desirable property that the ex-
istence of an equilibrium guarantees the existence of an equilibrium
satisfying the strong minimal change criterion. We should note that
this is not a trivial statement since we are combining minimization of
two different elements: the cost of the operations and the distance be-
tween belief states. This proposition in fact follows from their careful
combination in the definition of MinNext.

Proposition 3 Let Obs = 〈O1, . . . , Om〉 be an observation se-
quence for Me. If Me has an evolving equilibrium of size s given
Obs, then there is at least one evolving equilibrium of size s given
Obs satisfying the strong minimal change criterion.

Note that in the definition of the strong minimal change criterion,
the knowledge base configurationsK ∈ NextKB(Sj ,Oj ,Kj), for
which the corresponding possible equilibria are not at a minimal dis-
tance from Sj , are not considered. However, there could be situa-
tions in which this minimization criterion is too strong. For example,
it may well be that all possible knowledge base configurations in
NextKB(Sj ,Oj ,Kj) are important, and we do not want to disre-
gard any of them. In that case, we can relax the minimization condi-
tion by applying minimization individually for each knowledge base
configuration in NextKB(Sj ,Oj ,Kj). The idea is that, for each
fixed K ∈ NextKB(Sj ,Oj ,Kj) we choose only those equilibria
of Me[K] which minimize the distance to Sj .

Formally, let S be a belief state forMe,K ∈ KBMe a knowledge
base configuration for Me, and O an instant observation for Me.
For each distance function d between belief states, we can define the
following set:

MinDist(S,O,K) ={S′ : S′ ∈MinCost(Me[K],O) and

there is no S′′ ∈MinCost(Me[K],O)

such that d(S, S′′) < d(S, S′)}

Using this more relaxed notion of minimization we can define
an alternative weaker criterion for minimal change to be applied to
evolving equilibria of an eMCS.

Definition 12 Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS,
and Obs = 〈O1, . . . , Om〉 be an observation sequence for Me, and
Se = 〈S1, . . . , Ss〉 be an evolving equilibrium of Me given Obs.
We assume that 〈K1, . . . ,Ks〉, with Kj = 〈kj1, . . . , kjn〉, is the se-
quence of knowledge base configurations associated with Se as in
Definition 10. Then, Se satisfies the weak minimal change criterion
of Me given Obs, if for each 1 ≤ j ≤ s the following conditions are
satisfied:

• Sj ∈MinCost(Me[Kj],Oj)

• Sj+1 ∈MinDist(Sj ,Kj+1,Oj+1)

In this case we can also prove that the existence of an evolving
equilibrium implies the existence of an equilibrium satisfying the
weak minimal change criterion. Again we note that the careful com-
bination of the two minimizations – cost and distance – in the defini-
tion of MinDist, is fundamental to obtain the following result.

Proposition 4 Let Obs = 〈O1, . . . , Om〉 be an observation se-
quence for Me. If Me has an evolving equilibrium of size s given
Obs, then Me has at least one evolving equilibrium of size s given
Obs satisfying the weak minimal change criterion.

We can easily prove that, in fact, the strong minimal change crite-
rion is stronger than the weak minimal change criterion.

Proposition 5 Let Me = 〈C1, . . . , Cn, O1, . . . , O`〉 be an eMCS,
and Obs = 〈O1, . . . , Om〉 be an observation sequence for Me, and
Se = 〈S1, . . . , Ss〉 be an evolving equilibrium of Me given Obs. If
Se satisfies the strong minimal change criterion of Me given Obs,
then Se satisfies the weak minimal change criterion of Me given
Obs.

We end this section by briefly discussing a global alternative to the
minimization of costs of operations. Recall that both MinNext and
MinDist combine minimization of distances between belief states,
and minimization of costs of operations. The minimization on costs
is done at each time instant. Another possibility is, instead of mini-
mizing the cost at each time instant j, to minimize the global cost of
an evolving equilibrium.

We first extend the cost function over belief states to a cost func-
tion over evolving belief states. Let Se = 〈S1, . . . , Ss〉 be an evolv-
ing belief state for Me, and Obs = 〈O1, . . . ,Om〉 an observation
sequence forMe such thatm ≥ s. Then we can define the cost of Se

given Obs:

Cost(Se, Obs) =
s∑

j=1

Cost(Sj ,Oj)

51

Let Obs = 〈O1, . . . ,Om〉 be an observation sequence for Me

and let s ≤ m. We now define the set of evolving equilibria of size
s of Me given Obs which minimize the total cost of the operations
generated by it.

MinCost(Me, Obs, s) = {Se :

Se is an evolving equilibrium of size s of Me given Obs and

there is no evolving equilibrium S′e of size s of Me given Obs

such that Cost(S′e, Obs) < Cost(Se, Obs)}

Since the minimization on costs of operations is orthogonal to the
minimization on distances between belief states, it would be straight-
forward to use MinCost(Me, Obs, s) to define the global cost ver-
sions of MinNext and MinDist, and use them to define the re-
spective strong and weak minimal change criteria.

5 Related and Future Work
In this paper we have studied the notion of minimal change in the
context of the dynamic framework of evolving Multi-Context Sys-
tems (eMCSs) [15]. We have presented and discussed some alterna-
tive definitions of minimal change criteria for evolving equilibria of
a eMCS.

Closely related to eMCSs is the framework of reactive Multi-
Context Systems (rMCSs) [5, 9, 8] inasmuch as both aim at extend-
ing mMCSs to cope with dynamic observations. Three main differ-
ences distinguish them.

First, whereas eMCSs rely on a sequence of observations, each
independent from the previous ones, rMCSs encode such sequences
within the same observation contexts, with its elements being explic-
itly timestamped. This means that with rMCSs it is perhaps easier
to write bridge rules that refer, e.g., to specific sequences of observa-
tions, which in eMCSs would require explicit timestamps and storing
the observations in some context, although at the cost that rMCSs
need to deal with explicit time which adds an additional overhead.
Second, since in rMCSs the contexts that result from the application
of the management operations are the ones that are used in the sub-
sequent state, difficulties may arise in separating non-persistent and
persistent effects, for example, allowing an observation to override
some fact in some context while the observation holds, but without
changing the context itself – such separation is easily encodable in
eMCSs given the two kinds of bridge rules, i.e., with or without the
next operator. Finally, the bridge rules with the next operator al-
low the specification of transitions based on the current state, such as
for example one encoded by the rule next(add(p))← not p, which
do not seem possible in rMCSs. Overall, these differences seem to
indicate that an interesting future direction would be to merge both
approaches, exploring a combination of explicitly timestamped ob-
servations with the expressiveness of the next operator.

Also interesting is to study how to perform AGM style belief re-
vision at the (semantic) level of the equilibria, as in Wang et al [28],
though necessarily different since knowledge is not incorporated in
the contexts.

Another framework that aims at modeling the dynamics of knowl-
edge is that of evolving logic programs EVOLP [2] focusing on
updates of generalized logic programs. Closely related to EVOLP,
hence to eMCS, are the two frameworks of reactive ASP, one imple-
mented as a solver clingo [11] and one described in [5]. The system
clingo extends an ASP solver for handling external modules provided
at runtime by a controller. The output of these external modules can
be seen as the observations of EVOLP. Unlike the observations in

EVOLP, which can be rules, external modules in clingo are restricted
to produce atoms so the evolving capabilities are very restricted. On
the other hand, clingo permits committing to a specific answer-set
at each state, a feature that is not part of EVOLP, nor of eMCSs.
Reactive ASP as described in [5] can be seen as a more straightfor-
ward generalization of EVOLP where operations other than assert
for self-updating a program are permitted. Whereas EVOLP employs
an update predicate that is similar in spirit to the next predicate of
eMCSs, it does not deal with distributed heterogeneous knowledge,
neither do both versions of Reactive ASP. Moreover, no notion of
minimal change is studied for these frameworks.

The dynamics of eMCSs is one kind of dynamics, but surely not
the only one. Studying the dynamics of the bridge rules is also a
relevant, non-trivial topic, to a great extent orthogonal to the current
development, which nevertheless requires investigation.

Another important issue open for future work is a more fine-
grained characterization of updating bridge rules (and knowledge
bases) as studied in [14] in light of the encountered difficulties when
updating rules [24, 25, 27] and the combination of updates over var-
ious formalisms [25, 26].

Also, as already outlined in [16], we can consider the generaliza-
tion of the notions of minimal and grounded equilibria [6] to eMCSs
to avoid, e.g., self-supporting cycles introduced by bridge rules, or
the use of preferences to deal with several evolving equilibria an
eMCS can have for the same observation sequence.

Also interesting is to apply the ideas in this paper to study the
dynamics of frameworks closely related to MCSs, such as those
in [20, 13].

ACKNOWLEDGEMENTS

We would like to thank the referees for their comments, which
helped improve this paper considerably. Matthias Knorr and João
Leite were partially supported by FCT under project “ERRO
– Efficient Reasoning with Rules and Ontologies” (PTDC/EIA-
CCO/121823/2010). Ricardo Gonçalves was supported by FCT grant
SFRH/BPD/47245/2008 and Matthias Knorr was also partially sup-
ported by FCT grant SFRH/BPD/86970/2012.

REFERENCES

[1] M. Alberti, A. S. Gomes, R. Gonçalves, J. Leite, and M. Slota, ‘Norma-
tive systems represented as hybrid knowledge bases’, in CLIMA, eds.,
J. Leite, P. Torroni, T. Ågotnes, G. Boella, and L. van der Torre, volume
6814 of LNCS, pp. 330–346. Springer, (2011).

[2] J. Alferes, A. Brogi, J. Leite, and L. Pereira, ‘Evolving logic programs’,
in JELIA, eds., S. Flesca, S. Greco, N. Leone, and G. Ianni, volume
2424 of LNCS, pp. 50–61. Springer, (2002).

[3] D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, ‘Stream reasoning
and complex event processing in ETALIS’, Semantic Web, 3(4), 397–
407, (2012).

[4] D. Barbieri, D. Braga, S. Ceri, E. Valle, and M. Grossniklaus, ‘C-
SPARQL: a continuous query language for RDF data streams’, Int. J.
Semantic Computing, 4(1), 3–25, (2010).

[5] G. Brewka, ‘Towards reactive multi-context systems’, in LPNMR, eds.,
P. Cabalar and T. C. Son, volume 8148 of LNCS, pp. 1–10. Springer,
(2013).

[6] G. Brewka and T. Eiter, ‘Equilibria in heterogeneous nonmonotonic
multi-context systems’, in AAAI, pp. 385–390. AAAI Press, (2007).

[7] G. Brewka, T. Eiter, M. Fink, and A. Weinzierl, ‘Managed multi-context
systems’, in IJCAI, ed., T. Walsh, pp. 786–791. IJCAI/AAAI, (2011).

[8] G. Brewka, S. Ellmauthaler, and J. Pührer, ‘Multi-context systems for
reactive reasoning in dynamic environments’, in ECAI, eds., T. Schaub,
G. Friedrich, and B. O’Sullivan. IOS Press, (2014). To appear.

52

[9] S. Ellmauthaler, ‘Generalizing multi-context systems for reactive
stream reasoning applications’, in ICCSW, eds., A. V. Jones and N. Ng,
volume 35 of OASICS, pp. 19–26. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, (2013).

[10] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and
T. Schaub, ‘Stream reasoning with answer set programming: Prelimi-
nary report’, in KR, eds., G Brewka, T. Eiter, and S. A. McIlraith. AAAI
Press, (2012).

[11] M. Gebser, T. Grote, R. Kaminski, and T. Schaub, ‘Reactive answer set
programming’, in LPNMR, eds., J. P. Delgrande and W. Faber, volume
6645 of LNCS, pp. 54–66. Springer, (2011).

[12] F. Giunchiglia and L. Serafini, ‘Multilanguage hierarchical logics or:
How we can do without modal logics’, Artif. Intell., 65(1), 29–70,
(1994).

[13] R. Gonçalves and J. Alferes, ‘Parametrized logic programming’, in
JELIA, eds., T. Janhunen and I. Niemelä, volume 6341 of LNCS, pp.
182–194. Springer, (2010).

[14] R. Gonçalves, M. Knorr, and J. Leite, ‘Evolving bridge rules in evolv-
ing multi-context systems’, in CLIMA XV, eds., N. Bulling, L. van der
Torre, S. Villata, W. Jamroga, and W. Vasconcelos, (2014). To appear.

[15] R. Gonçalves, M. Knorr, and J. Leite, ‘Evolving multi-context systems’,
in ECAI, eds., T. Schaub, G. Friedrich, and B. O’Sullivan. IOS Press,
(2014). To appear.

[16] R. Gonçalves, M. Knorr, and J. Leite, ‘Towards efficient evolving multi-
context systems (preliminary report)’, in ReactKnow 2014, (2014). To
appear.

[17] M. Homola, M. Knorr, J. Leite, and M. Slota, ‘MKNF knowledge bases
in multi-context systems’, in CLIMA, eds., M. Fisher, L. van der Torre,
M. Dastani, and G. Governatori, volume 7486 of LNCS, pp. 146–162.
Springer, (2012).

[18] V. Ivanov, M. Knorr, and J. Leite, ‘A query tool for EL with non-
monotonic rules’, in ISWC, eds., H. Alani, L. Kagal, A. Fokoue, P. T.
Groth, C. Biemann, J. Parreira, L. Aroyo, N. F. Noy, C. Welty, and
K. Janowicz, volume 8218 of LNCS, pp. 216–231. Springer, (2013).

[19] M. Knorr, J. Alferes, and P. Hitzler, ‘Local closed world reasoning
with description logics under the well-founded semantics’, Artif. Intell.,
175(9-10), 1528–1554, (2011).

[20] M. Knorr, M. Slota, J. Leite, and M. Homola, ‘What if no hybrid rea-
soner is available? Hybrid MKNF in multi-context systems’, J. Log.
Comput., (2013).

[21] F. Lécué and J. Pan, ‘Predicting knowledge in an ontology stream’, in
IJCAI, ed., F. Rossi. IJCAI/AAAI, (2013).

[22] B. Motik and R. Rosati, ‘Reconciling description logics and rules’, J.
ACM, 57(5), (2010).

[23] F. Roelofsen and L. Serafini, ‘Minimal and absent information in con-
texts’, in IJCAI, eds., L. Kaelbling and A. Saffiotti, pp. 558–563. Pro-
fessional Book Center, (2005).

[24] M. Slota and J. Leite, ‘On semantic update operators for answer-set
programs’, in ECAI, eds., H. Coelho, R. Studer, and M. Wooldridge,
volume 215 of Frontiers in Artificial Intelligence and Applications, pp.
957–962. IOS Press, (2010).

[25] M. Slota and J. Leite, ‘Robust equivalence models for semantic updates
of answer-set programs’, in KR, eds., G. Brewka, T. Eiter, and S. A.
McIlraith. AAAI Press, (2012).

[26] M. Slota and J. Leite, ‘A unifying perspective on knowledge updates’,
in JELIA, eds., L. del Cerro, A. Herzig, and J. Mengin, volume 7519 of
LNCS, pp. 372–384. Springer, (2012).

[27] M. Slota and J. Leite, ‘The rise and fall of semantic rule updates based
on SE-models’, TPLP, (2014). To appear.

[28] Y. Wang, Z. Zhuang, and K. Wang, ‘Belief change in nonmonotonic
multi-context systems’, in LPNMR, eds., P. Cabalar and T. C. Son, vol-
ume 8148 of LNCS, pp. 543–555. Springer, (2013).

53

Towards a Simulation-Based Programming Paradigm for
AI applications1

Jörg Pührer2

Abstract. We present initial ideas for a programming paradigm
based on simulation that is targeted towards applications of artificial
intelligence (AI). The approach aims at integrating techniques from
different areas of AI and is based on the idea that simulated entities
may freely exchange data and behavioural patterns. We define basic
notions of a simulation-based programming paradigm and show how
it can be used for implementing AI applications.

1 Introduction

Artificial intelligence (AI) is a wide field of research in which many
different outstanding techniques have been developed and refined
over the last decades [15]. Naturally, the question arises how to cou-
ple or integrate different subsets of these accomplishments. Besides
many approaches to couple specific individual methods, a need for
a wider integration of different AI techniques has been identified in
the area of artificial general intelligence [16, 10]. Here, the goal is
to build strong AI systems, i.e., reach human level intelligence. Ar-
guably, integration of existing techniques is also desirable for less
ambitious AI applications (that we aim for), consider for instance the
realisation of intelligent opponents in computer games as a motivat-
ing example. As a side remark, note that current solutions for game
AI rarely make use of techniques from reseach in AI but are often
ad-hoc, based on hardcoded strategies, and incapable of learning.

Simulation has been used in different fields of AI (such as agent-
based systems [12, 18] or evolutionary computation [4]) for achiev-
ing intelligent behaviour. The rationale is that many aspects of in-
telligent behaviour are complex and not well understood but can be
observed to emerge when the environment in which they occur is
simulated adequately. In this work, we propose to use a simulation
environment for realising AI applications that offers an easy way to
integrate existing methods from different areas of AI such as com-
putational intelligence, symbolic AI, or statistical methods. In par-
ticular, we present the basic cornerstones of a simulation-based pro-
gramming paradigm (SBP) and demonstrate how it can be used to
model different use cases for intelligent systems. The basic idea of
SBP is to simulate an environment of interacting entities driven by
concurrent processes. Entities are not grouped in types or classes and
contain data as well as transition descriptions that define possible be-
haviour. Both, the behaviour and data associated to entities are sub-
ject to change which allows for learning techniques.

In the proposed approach, different points of views, hypothetical
reasoning, or different granularities of simulation can be addressed

1 This work has been partially supported by the German Research Foundation
(DFG) under grants BR-1817/7-1 and FOR 1513.

2 Institute of Computer Science, Leipzig University, Germany, email:
puehrer@informatik.uni-leipzig.de

by using multiple worlds refering to (not necessarily) the same en-
tities. For example, the beliefs of an agent which is modelled by an
entity can be represented by a world that might differ from the data
available in another world that represents an objective reality. This
gives rise for epistemic reasoning capabilities, where e.g., an agent
A thinks about what agent B thinks and acts upon these beliefs.

The remainder of the paper is organised as follows. Next, we intro-
duce the basic notions of a simulation-based programming paradigm.
Section 3 discusses how to model different scenarios of AI applica-
tions in the approach. We show how behaviour can be exchanged be-
tween entities and discuss how evolutionary processes can emerge.
Moreover, we demonstrate the use of different worlds for hypotheti-
cal reasoning, expressing and exchanging different beliefs about facts
and processes, and for using different granularities of simulation. In
Section 4 we discuss interface considerations for transition descrip-
tions. After that, Section 5 addresses the issue of maintaining con-
sistency when data is updated by concurrent processes. Section 6
discusses the relation to existing techniques including differences to
agent-based approaches and object-oriented programming. The pa-
per is concluded in Section 7 with a short summary and an outlook
on future work.

2 Simulation-Based Programming

In this section we explain the architecture of the proposed simulation-
based programming paradigm on an abstract level.

An SBP system deals with different worlds, each of which can
be seen as a different point of view. The meaning of these worlds
is not pre-defined by SBP, e.g., the programmer can decide to take
an objectivistic setting and consider one world the designated real
one or treat all worlds alike. Different worlds allow for example to
model the beliefs of an agent as in an agent-based approach. Other
applications are hypothetical reasoning or realising different granu-
larities of abstraction for efficiency, e.g., parts of the simulation that
are currently in focus can be manipulated by a world that offers a
more precise simulation whereas parts out of focus are handled by
another world that implements an approximation (see Section 3).

A world contains a set of named entities which are the primary ar-
tifacts of SBP. Entities may have two sorts of named attributes: data
entries which correspond to arbitrary data (including references to
other entities) and transition descriptions which define the behaviour
of the entities over time. The name of an entity has to be unique with
respect to a world and serves as a means to reference the entity, how-
ever the same entity may appear in different worlds with potentially
different attributes and attribute values. Transition descriptions can
be seen as the main source code elements in the approach and they
are, similar to the data entries, subject to change during runtime. This

55

allows for a dynamic setting in which the behaviour of entities can
change over time, e.g., new behaviour can be learned, acquired from
other entities, or shaped by evolutionary processes. We do not pro-
pose a particular language or programming paradigm for specifying
transition descriptions. It might, on the contrary, be beneficial to al-
low for different languages for different transition descriptions even
within the same simulation. For instance, a transition description im-
plementing sorting can be realised by some efficient standard algo-
rithm in an imperative language, while another transition description
that deals with a combinatorial problem with many side constraints
uses a declarative knowledge representation approach like answer-
set programming (ASP) [8, 13] in which the problem can be eas-
ily modelled. Declarative languages are also quite useful in settings
where the transition description should be modified at runtime (as
mentioned above) as they often allow for easy changes. That is, be-
cause problem descriptions in these languages are typically concise
and many declarative languages offer high elaboration tolerance [9],
i.e., little changes of the problem statement require only few adapta-
tions of the source code that solves the problem.

We require transition descriptions—in whatever language they are
written—to comply to a specific interface that allows us to execute
them in asynchronous processes. In particular, the output of a tran-
sition contains a set of updates to be performed on worlds, entities,
data entries, and transition descriptions. When a transition has fin-
ished, per entity, these changes are applied in an atomic transaction
that should leave the entity in a consistent state (provided that the
transition description is well designed).

As mentioned, transition descriptions are executed in processes.
Each process is associated with some entity and runs a transition de-
scription of this entity in a loop. A process can however decide to ter-
minate itself or other processes at any time, initiate other processes,
and wait for their results before finishing their own iteration.

We assume an infinite set N of names and say that a concept c is
named if it has an associated name nc ∈ N . We frequently use the
data structure of a map, which is a setM of pairs 〈n, v〉 such that v is
a named object, n = nv , and 〈n, v1〉, 〈n, v2〉 ∈M implies v1 = v2.
With slight abuse of notation we write v ∈ M for 〈nv, v〉 ∈ M .
In the following we describe how the concepts discussed above are
related more formally. To this end, we assume the availability of a set
Σ of semantics for transition functions that will be explained later on.

Definition 1

• A transition description is a pair t = 〈sc, σ〉, where sc is a piece
of source code, and σ ∈ Σ is a semantics.

• A process is a tuple p = 〈t, tb〉, where t is a transition description
and tb is a timestamp marking the begin of the current transition.

• An entity is a tuple e = 〈D,T, P 〉, where D is a map of named
data, T is a map of named transition descriptions, and P is a map
of named processes. Entries of D,T , and P are called properties
of e.

• A world is a map of named entities.
• An SBP configuration is a map of named worlds.

We assume a pre-specified set Υ of updates which are descriptions
of what changes should be made to an SBP configuration together
with a fixed update function υ that maps an SBP configuration, an
entity name, the name of a world, and a set of updates, to a new SBP
configuration.

Definition 2 A result structure for a process p is a tuple r = 〈U, bc〉,
where U ⊆ Υ is a set of updates and bc is one of the boolean values

true or false that decides whether process p should continue with
another transition.

A semantics σ ∈ Σ is a function that maps a piece of source code,
an SBP configuration, the name of a world, the name of an entity,
and a timestamp to a result structure.

Dynamic Behaviour For presentational reasons we forgo giving
a precise definition of the runtime semantics of an SBP system that
would require heavy notation but describe the behaviour of the sys-
tem on a semi-formal level using the concepts introduced above.

For running an SBP system we need an initial collection of worlds.
Thus, let c0 be an SBP configuration.3 We assume a discrete notion
of time where a run of the system starts at time 0, and that ct denotes
the SBP configuration of each point in time t during a run.

At every time t during the run of an SBP system the following
conditions hold or changes are performed:

• for each process p such that p = 〈t, tb〉 ∈ P for some entity
e = 〈D,T, P 〉 in some world w of ct there are three options:

(i) p continues, i.e., p ∈ P ′ for entity e′ = 〈D′, T ′, P ′〉 with
ne′ = ne in world w′ ∈ ct+1 with nw′ = nw;

(ii) p can be cancelled, i.e., p 6∈ P ′ for P ′ as in Item (i);

(iii) p has finished its computation, i.e., the result of p, namely

rp = σ(sc, c0,nw,ne, t) = 〈U, bc〉

is computed for t = 〈sc, σ〉. The updates that were computed
by p are added to a set U t

ne,nw
of updates for entity e in world

w, i.e., U ⊆ U t
ne,nw

.
The original process p is deleted similar as in Case (ii). How-
ever, if bc = true then, at time point t+1 after t, a new iteration
of the process starts, i.e., if there is an entity e′ = 〈D′, T ′, P ′〉
with ne′ = ne in world w′ ∈ ct+1 with nw′ = nw and there
is a transition description t′ ∈ T ′ such that nt′ = nt, then P ′

contains a new process p′ = 〈t′, t + 1〉 with np′ = np.

Why and when a process continues, is cancelled, or finishes is
not further specified at this point because, intuitively, in an SBP
system this depends on decisions within the process itself, other
processes, and the available computational resources.

• starting with c′1 = ct, iteratively, for every item e in some world
w of ct where the set U t

ne,nw
of collected updates is non-empty, a

new SBP configuration is computed by the update function:

c′i+1 = υ(c′i,ne,nw, U
t
ne,nw

)

The SBP configuration c′n computed in the last iteration becomes
the new configuration ct+1 of the system for the next point in time.
We do not make assumptions about the order in which updates
are applied for now and discuss the related topic of consistency
handling in Section 5.

Using names (for worlds, entities, and properties) allows us to
speak about concepts that change over time. For example, if e0 is
an entity e0 = 〈D,T, P 〉 in some world at time 0 and some data is
added to D for time 1 then, technically, this results in another entity
e1 = 〈D′, T, P 〉. As our intention is to consider e1 an updated ver-
sion of e0 we use the same names for both, i.e., ne0 = ne1 . In the
subsequent work we will sometimes refer to concepts by their names.

3 In practice, c0 could by convention consist of a single world with a process
running a transition description for initialisation, similar to a main function.

56

Along these lines, we introduce the following path-like notation us-
ing the .-operator for referring to SBP concepts in a run. Assuming
a sequence of SBP configurations c0, c1, . . . in a run as above, we
refer to

• the world wi ∈ ct by n t
wi

,
• the entity e = 〈D,T, P 〉 ∈ wi by n t

wi
.ne,

• the property x inD, T , or P by n t
wi
.ne.nx (we assume that no en-

tity has multiple data entries, transition descriptions, or processes
of the same name).

If clear from the context, we drop the name of the world or entity and
apply the timestamp directly to entities or properties, or also drop the
timestamp if not needed or clear.

3 Modelling AI Applications in SBP

The concepts introduced in the previous section provide an abstract
computation framework for SBP. Next, we demonstrate how to use it
for modelling AI scenarios. Note that in this section we will use high-
level pseudo code for expressing the source code of transition de-
scriptions and emphasise that in an implementation we suggest to use
different high-level programming languages tailored to the specific
needs of the task handled by the transition description. We discuss
interface considerations for these embeddings of other formalisms in
Section 4.

Following the basic idea, i.e., simulating an intended scenario on
the level of the programming language, entities in SBP are meant to
reflect real world entities. In contrast to objects as in object-oriented
programming (cf. Section 6), entities are not grouped in a hierarchy
of classes. Classes are a valuable tool in settings that require clear
structures and rigorously defined behaviour. However, in the scenar-
ios we target, the nature of entities may change over time and the
focus is on emerging rather than predictable behaviour. For example,
in a real-world simulation, a town may become a city and a cater-
pillar a butterfly, etc., or, in fictional settings (think of a computer
game) a stone could turn into a creature or vice versa. We want to di-
rectly support metamorphoses of this kind, letting entities transform
completely over time regarding their data as well as their behaviour
(represented by transition descriptions). Instead of using predefined
classes, type membership is expressed by means of properties in SBP,
e.g., each entity ne may have a data entry ne.types that contains a
list of types that ne currently belongs to.

Example 1 We deal with a scenario of a two-dimensional area, rep-
resented by a single SBP worldw, where each entity nw.ne may have
a property ne.loc with values of form 〈X,Y 〉 determining the loca-
tion of ne to be at coordinates 〈X,Y 〉. The area is full of chickens
running around, each of which is represented by an entity. In the be-
ginning, every chicken ch has a transition description ch.mvRand
that allows the chicken to move around with the pseudo code:

wait(randomValue(1..5000))
dir = randomValue(1..4)
switch{dir}
case 1: return {’mv_up’}
case 2: return {’mv_right’}
case 3: return {’mv_down’}
case 4: return {’mv_left’}

The transition first waits for a random amount of time and chooses
a random direction for the move, represented by the updates

mv up,mv right, · · · ⊆ Υ. The semantics of mvRand always re-
turns 〈U, true〉, where U contains the update (the direction to move)
and true indicates that after the end of the transition there should
be a new one. When the update function υ is called with one of the
mv updates it changes the value of ch.loc, e.g., if cht.loc has value
〈3, 5〉 and the update is mv left then cht+1.loc has value 〈2, 5〉.

Besides randomly walking chickens, the area is sparsely strewn
with corn. Corn does not move but it is eaten by chicken. Hence, each
chicken ch has another transition description eat with the code:

if there is some entity en in myworld with
en.loc = my.loc and
en.types contains ’corn’
then
return {’eatCorn(en)’}

Here, we assume that using the keyword my we can refer to proper-
ties of the entity to which the transition description belongs (ch in
this case). Furthermore, myworld refers to the world in which this
entity appears. Also here, every iteration of eat automatically starts
another one. For an update eatCorn(en), the update function

• deletes the location entry en.loc of the corn and
• notifies the corn entity that it was eaten by setting the data entry

en.eatenBy to ch (we will need the information which chicken
ate the corn later) and adding a process to the corn entity with
the transition description en.beenEaten that is specified by the
following pseudo code:

return {’delete_me’}

that causes the corn to delete itself from the area. Unlike for the
other transition descriptions, a process with en.beenEaten lasts
for only a single iteration.

Assume we have an initial SBP configuration c0 = 〈w〉, where ev-
ery chicken entity in w has an active process named move with tran-
sition description mvRand and a process with transition description
eat. Then, a run simulates chickens that run around randomly and
eat corn on their way.

While Example 1 illustrates how data is changed over time and
new processes can be started by means of updates, the next example
enriches the scenario with functionality for learning new behaviour.

Example 2 We extend the scenario of Example 1 to a fairy tale the
setting by assuming that among all the corn entities, there is one
dedicated corn named cornOfWisdom that has the power to make
chickens smarter if they eat it.

This cornOfWisdom has a transition description
cornOfWisdom.mvSmart:

wait(randomValue(1..1000))
en is an entity in myworld where
en.types contains ’corn’ and
there is no other entity en’

in myworld where
en’.types contains ’corn’ and
distance(en’.loc,my.loc) <

distance(en.loc,my.loc)
let my.loc=(myX,myY)
let en.loc=(otherX,otherY)
distX = otherX - myX
distY = otherY - myY

57

if |distX| > |distY| then
if distX > 0 then
return {’mv_right’}
else
return {’mv_left’}

else
if distY > 0 then
return {’mv_down’}
else
return {’mv_up’}

Intuitively, this transition causes an entity to move towards the clos-
est corn rather than walking randomly as in mvRand. Another dif-
ference is that mvSmart processes have shorter iterations on aver-
age as the range of the random amount of time to wait is smaller.
The cornOfWisdom does not have active processes for this transi-
tion definition itself but can pass it on to everyone who eats it. This
is defined in the transition cornOfWisdom.beenEaten that differs
from the beenEaten transition description of other corn:

ch = my.eatenBy
return {’delete_me’,

’copyTransition(mvSmart,ch)’,
’changeTransition(ch.move,mvSmart)’}

Besides issueing the delete me update as it is the case for
normal corn, the update copyTransition(mvSmart, ch)
copies the mvSmart transition description from the
cornOfWisdom to the chicken by which it was eaten. The up-
date changeTransition(ch.move,mvSmart) changes the move
process of the chicken to use its new mvSmart transition descrip-
tion instead of mvRand. Thus, if a chicken happens to eat the
cornOfWisdom it will subsequently have a better than random
strategy to catch some corn.

Having means to replace individual behavioural patterns, as in the
example allows for modelling evolutionary processes in an easy
way. For example, if the chicken scenario is modified in a way that
chicken which do not eat corn regularly will die, a chicken that ate
the cornOfWisdom has good chances to survive for a long period of
time. Further processes could allow chickens to reproduce when they
meet such that baby chicken may inherit which transition description
to use for moving from one of the parents. Then, most likely, chicken
using mvSmart will be predominant soon.

The next example illustrates the use of worlds for hypothetical
reasoning.

Example 3 Entity barker represents a waiter of an international
restaurant in a tourist area trying to talk people on the street into
having dinner in his restaurant. To this end, barker guesses what
food they could like and makes offers accordingly. We assume an SBP
configuration in which for every entity h that represents a human,
there is a world wh that represents the view of the world of this hu-
man. The following transition description barker.watchPeople al-
lows barker to set the eating habits of passer-by in his worldwbarker

using country stereotypes.

wait(randomValue(50))
let en be an entity in myworld where
en.loc near my.loc
en.types contains ’human’
en.eatingHabits = unknown
country = guess most likely

home country of en
prototype = myworld.country.inhPrototype
return {’setEatingHabits(en,propotype)’,

’setPotentialCustomer(en)’}

For every country, wbarker contains a reference inhPrototype to an
entity representing a typical person from this country. The update
setEatingHabits(p1, p2) copies transition descriptions and data
properties that are related with food from person p2 to person p1.
Moreover, the update setPotentialCustomer(p) lets barker con-
sider entity p to be a potential customer. In order to choose what to
offer a potential customer, the waiter thinks about what kind of food
the person would choose (based on his stereotypes). This is modelled
via the following transition barker.makeOffer:

let cus be a potential customer in myworld
w’ = copy of myworld
w’.cus.availableFood =

restaurant.availableFood
w’.cus.hungry = true
intermediate return {addWorld(w’),

startProcess(w’.cus.startDinner)}
when process w’.cus.foodSelected is finished
food = w’.cus.selectedFood
return {praiseFood(food), deleteWorld(w’)}

To allow for hypothetical reasoning by the waiter, a temporary copy
w′ of the world wbarker is created. The sole purpose of this world
is to simulate the customer dining. We use a temporary world since
the simulation uses the same transition descriptions that drive the
overall simulation. For example, if we would use wbarker instead, this
would mean that barker thinks that the customer is actually having
dinner. If we would use the world of the customer that would mean
that the customer thinks she is having dinner and so on.

After creating w′, the transition description defines that the food
available to the version of the customer in w′ is exactly the food
that is on the menu of the restaurant and the customer is set to be
hungry in the imagination of the waiter. Then, w′ is added to the
SBP configuration and a process for w′.cus is started using the tran-
sition description startDinner that lets enitity cus start dining in
w′. Note that the keyword intermediate return in the pseudo
code is a convenience notation that allows for manipulating the SBP
configuration during a transition which is strictly speaking not al-
lowed in the formal framework of Section 2. Nevertheless, the same
behaviour could be accomplished in a conformant way by splitting
barker.makeOffer into two separate transition descriptions that are
used in an alternating scheme. As soon as the customer chooses some
food in the simulation, transition barker.makeOffer is notified. It
continues with reading which food has been chosen in the hypotheti-
cal setting. Finally, the update praiseFood(food) causes the waiter
to make an offer for the chosen food in the subsequent computation,
whereas deleteWorld(w′) deletes the temporary world.

Note that copying worlds as done in Example 3 does not necessar-
ily imply copying all of the resources in this world within an im-
plementation of an SBP runtime engine (cf. the final discussion in
Section 7). Moreover, it will sometimes be useful to adjust transition
definitions in the copied world. For instance, when a transition defi-
nition deliberately slows down the pace of the simulation as it is done
in Examples 1 and 2 using the wait statement, it would make sense
to reduce the waiting time in a world for hypothetical reasoning. An-
other need for adapting a copied world is mentioned in Section 4 in
the context of externally controlled processes.

58

Example 4 We continue Example 3 by assuming an SBP configura-
tion where a tourist, Ada, passes by the waiter. His process for tran-
sition barker.watchPeople classifies Ada by her looks to be an En-
glishwoman. After that, the process for barker.makeOffer starts hy-
pothetical reasoning about Ada having dinner. Following the stereo-
types of barker about English eating habits, the process reveals that
Ada would go for blood pudding which he offers her subsequently.
However, Ada is not interested in this dish as she is vegetarian. She
explains her eating habits to the waiter, modelled by the following
transition description ada.explainEatingHabits:

let pers be current discussion partner
in myworld

if pers offers food containing meat then
let w_pers be the world of pers
return {’setEatingHabits(w_pers.me,

myworld.me)’}

Here, the update setEatingHabits that we used also in the previous
example, the transition will overwrite the food related properties of
the entity representing Ada in the world of barker with her actual
eating habits. If barker runs the dining simulation again for making
another offer the result will match the real choices of Ada.

The last two examples showed how worlds can be used to express
different modalities like individual points of views or hypothetical
scenarios. Next, we sketch a setting where different worlds represent
the same situation at different granularities.

Example 5 Consider a computer game in which the player controls
a character in an environment over which different villages are dis-
tributed. Whenever the character is close to or in a village the in-
habitants of the village should be simulated following their daily
routines and interacting with the player. However, as the game en-
vironment is huge, simulating all inhabitants of each village at all
times is too costly. The problem can be addressed by an SBP config-
uration that has two worlds, w(v)act and w(v)apx for each village
v. Intuitively, w(v)act simulates the village and its people in all de-
tails but has only active processes while the player is closeby. The
world w(v)apx approximates the behaviour of the whole village, e.g.,
increasing or shrinking of the population, economic output and in-
put, or relations to neighbour villages, based on statistics and it has
only active processes whenever the player is not around. Whenever
the player enters a village, a process is started that synchronises the
world w(v)act with the current state of the village in w(v)apx, e.g.,
by deleting or adding new inhabitants or shops. Moreover, it starts
processes in w(v)act and cancels processes in w(v)apx. Another type
of process is started when the player leaves again, that performs an
opposite switch from w(v)apx to w(v)apx being active.

While learning by simply copying transition descriptions from dif-
ferent other entities as shown earlier already allows for many dif-
ferent behaviour patterns to emerge, an SBP system can also be
designed such that new transition descriptions are created at run-
time. For example, by implementing mutation or crossing-over op-
erators for decision descriptions, it is easy to realise genetic pro-
gramming [6] principles in SBP. Another source for new transition
descriptions is related to an important challenge in AI: learning be-
haviour by watching the environment. In an SBP framework it is easy
to incorporate existing learning techniques [14, 1] by means of tran-
sition descriptions. Behaviour acquired by processes executing such
transitions can then also be represented by means of transition de-
scriptions and distributed to entities.

4 Interface Considerations for Transition
Descriptions

As we want to allow for different formalisms to be used for transition
descriptions it is important that they are able to interact smoothly.
This is essentially already reached if their semantics respects the in-
terface of Definition 2. As different transitions communicate by read-
ing and writing from and to the SBP configuration their formalisms
do not need to be aligned in a different way. It is certainly necessary,
however, that they use the same format for property values.

The examples in the previous section already show some of the
features that we think are useful in a language realising a transition
description. For one, it is valuable to have generic keywords stand-
ing for the name of the entity to which the transition belongs to and
its world, like me and myworld in the examples. This way, if the
transition description is copied to another entity or the same entity in
another world it dynamically works with the other entity or world.

We do not define an explicit user interface for SBP systems but
suggest that interaction of the user or another external source with an
SBP system by means of externally controlled processes: A transition
description can use a dedicated ’external semantics’ where the result
structure returned for every transition is provided by the user or an
external system. Following this approach, an SBP system acts as a re-
active approach that is influenced by events from its environment. By
having the decision which parts are controlled externally and which
ones within the system on the level of transition descriptions allows
for having parts of the behaviour of an entity partially controlled by
the user and partially by the system. Moreover, as decisions descrip-
tions can be replaced at runtime it is also possible to take control
over aspects previously handled by the system and, conversely, for-
merly externally controlled transitions can be automatised. This way
one can replace, e.g., a human player in a computer game by an AI
player or vice versa. Naturally, this requires a proper modelling. For
instance, in a simulation where worlds are copied for hypothetical
reasoning like in the restaurant examples, a modeller would proba-
bly want to replace human controlled processes by automated ones
in the copied world. Otherwise, the user would have to provide addi-
tional input for the hypothetical scenario.

In the context of the model-view-controller pattern, an SBP config-
uration represents the model and an SBP runtime engine corresponds
to the controller. We suggest to handle the view outside of SBP, al-
though it would be interesting to explore whether it is beneficial to
also model graphical user interfaces inside SBP.

5 Consistency of Data

A key element of SBP is concurrent programming. Thus, a natu-
ral question is how problems regarding concurrent access on data
and consistency of data are handled in the approach. Conceptionally,
conflicting updates that occur at the same time instant do not cause a
technical problem as the update function υ resolves an arbitrary set of
updates to a valid follow-up SBP configuration. In practice, however,
the functionality of this function has to be implemented and conflicts
(e.g., deleting and changing a property of the same name at the same
time) have to be addressed. Here, techniques for concurrency control
in databases [2] could be useful. Moreover, it might be worthwhile
to give the modeller means for specifying how to resolve individual
conclicts by a dedicated language. Besides technically conflicting up-
dates on data, another issue are semantical inconsistencies, i.e., data
whose meaning with respect to the modelled problem domain is con-
flicting. As an example, consider an SBP configuration modelling a

59

banana and two monkeys and assume that each monkey has a tran-
sition description that lets him grab the banana whenever it is laying
on the ground. Now suppose that both monkeys detect the banana
at slightly different times and their grabbing processes start. Then,
after the first monkey has taken the banana, the process of the other
monkey is still going on and, depending on the concrete modelling,
it could happen that the system is in a state where each monkey is
believed to have the banana. We argue that consistency problems of
this kind should be tackled on the level of modelling rather than by
the underlying computational framework as there are many types of
issues that have to be addressed in different ways and also in the real
world two monkeys could believe that they succeeded in getting a ba-
nana for a short period of time. One solution in the example could be
that the successful grabbing process of the first monkey cancels that
of the other or that the grabbing update is implemented in a condi-
tional way such that grabbing takes only place if the banana is still in
place at the time instant when the process has finished. Although one
cannot expect that problems of this kind are handled automatically,
a concurrent formalism should allow for addressing them in an easy
way. A major point for future work on SBP is to explore best prac-
tices for avoiding inconsistencies in the first place by adequate mod-
elling. Moreover, situations should be singled out in which incon-
sistency avoidance requires much modelling effort but the respective
problem could be handled by adding features to the framework.

6 Influences and Relation to Existing Approaches

A goal of our approach is to integrate the use of different AI tech-
niques in a dynamic framework. Here, a main mechanism of integra-
tion is using existing AI formalisms (e.g., ASP, planning techniques,
etc.) for solving subproblems by means of transitions descriptions.
This is similar in spirit to the use of different context formalisms in
recent reactive forms of heterogenous multi-context systems [3, 5].

The idea of using multiple worlds for different points of view and
modalities is loosely related to the possible world semantics of modal
logics [7].

Evolutionary processes are intrinsic to many types of simulation.
In, genetic algorithms [11] the fitness of individuals is typically rated
by a dedicated fitness function, whereas the most obvious approach
in SBP is simulating natural selection by competition in the simu-
lated environment, as discussed in the context of the chicken scenario
after Example 2. The evolution of behaviour is related to genetic pro-
gramming [6] where computer programs are shaped by evolutionary
processes. Besides processes for the evolution of data and behaviour
also other techniques that are frequently used in meta-heuristics, like
swarm intelligence methods can be modelled and mixed in SBP in a
natural way.

Agent-based systems (ABS) [12, 18] share several aspects with
SBP like the significance of emerging behaviour when entities are
viewed as agents. This view, however, is not adequate for all types
of entities in the SBP setting as an entity could also represent ob-
jects like stones, collections of entities, or intangible concepts like
’the right to vote’ which should not be seen as agents. Moreover,
agents interact via explicit acts of communication that can but need
not be modelled in an SBP configuration. Thus, we see SBP concep-
tionally one level below ABS, i.e., SBP languages can be used for
implementing ABSs rather than being ABSs themselves.

Focuses of integration efforts in artificial general intelligence are
communication APIs [19] and design methodology [17].

The shift of paradigm from procedural to object-oriented program-
ming (OOP) can be seen as a step towards structuring programming

to be more like the real world: in OOP, a world of objects of defined
types. In particular, objects are instances of classes that are organised
in a hierachy of classes in which data structures and behaviour can
be inherited from top to bottom. While classes are well-suited for ap-
plications that require a clear structuring of data, they also impose a
rigid corset on their instances: the data and behaviour of objects is
in essence limited to what is pre-defined in their class. Moreover, the
type of object is defined on instantiation and does not change during
runtime. In contrast, the behaviour and data of entities in SBP can be
changed over time. Inheritance in SBP works on the individual level:
entities can pass their transition descriptions and data entries to fel-
low entities. Thus, compared to OOP, inheritance is not organised in
a hierarchical way. The underlying motivation is to follow the main
idea of simulating real world objects, taking the stance that entities
in nature are individuals that are not structured into distinct classes
per se. Instead of the instantiation of classes for generating new ob-
jects, an important strategy for obtaining new entities in SBP is the
prototype pattern: copying an entity that is closest to how the new
entity should be like. As discussed in Section 3, other techniques for
creating new objects are sexual reproduction or random mutation.

Another difference between typical object-oriented languages and
the SBP approach is related to the control flow. Like procedural pro-
gramming, OOP programs are executed in an imperative way. Typi-
cally, a run of a program in OOP starts with an entry method executed
in a main thread from which child threads can be spawned in order to
obtain concurrency. When a method calls another, it is per default ex-
ecuted in the same thread, i.e., the execution of the calling method is
paused until the called method has finished. In SBP, there is no main
thread and each transition runs in an independent process. Thereby,
the approach exploits the trend to concurrent computing due to which
simulation became feasible for many applications.

7 Conclusion

In this work we proposed an approach for using simulation as a pro-
gramming paradigm. The cornerstones of the approach are

• typeless entities
• different worlds for different views on reality
• behaviour defined by heterogenous concurrent services
• exchange of behavioural patterns and individual inheritance

The main contribution of the paper is not a ready-to-use language
but an initial idea for an architecture to combine these principles in
a simulation-based programming paradigm. Clearly, there are many
important aspects that need to be addressed when putting SBP in
practice. Examples are the choice of data structures for entities, their
interface when using different formalisms in transition definitions,
and consistency of data as discussed in Section 5.

As a next step we want to explore the capabilities of different for-
malisms as a transition description language starting with ASP and
identify different modelling patterns for important problems. A ma-
jor goal is the development of a prototype SBP runtime engine which
opens a wide field for further research: An important point is how
to manage resources in SBP systems in which multiple worlds and
entities share identical or slightly different data and processes. Ef-
ficiency requirements could necessitate mechanisms for sharing re-
sources, e.g., by only keeping track of differences when a world or
entity is cloned.

60

REFERENCES
[1] Brenna Argall, Sonia Chernova, Manuela M. Veloso, and Brett Brown-

ing, ‘A survey of robot learning from demonstration’, Robotics and Au-
tonomous Systems, 57(5), 469–483, (2009).

[2] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman, Con-
currency Control and Recovery in Database Systems, Addison-Wesley,
1987.

[3] Gerhard Brewka, Stefan Ellmauthaler, and Jörg Pührer, ‘Multi-context
systems for reactive reasoning in dynamic environments’, in Proc.
ECAI’14, (2014). To appear.

[4] L.J. Fogel, A.J. Owens, and M.J. Walsh, Artificial intelligence through
simulated evolution, Wiley, Chichester, WS, UK, 1966.

[5] R. Gonçalves, M. Knorr, and J. Leite, ‘Evolving multi-context systems’,
in Proc. ECAI’14, (2014). To appear.

[6] John R. Koza, Genetic Programming: On the Programming of Comput-
ers by Means of Natural Selection, MIT Press, Cambridge, MA, USA,
1992.

[7] Saul Kripke, ‘A completeness theorem in modal logic’, J. Symb. Log.,
24(1), 1–14, (1959).

[8] Victor W. Marek and Mirosław Truszczyński, ‘Stable models and an
alternative logic programming paradigm’, in In The Logic Program-
ming Paradigm: a 25-Year Perspective, eds., Krzysztof R. Apt, Vic-
tor W. Marek, Mirosław Truszczyński, and David S. Warren, 375–398,
Springer, (1999).

[9] John McCarthy, ‘Elaboration tolerance’, in Proceedings of the 4th Sym-
posium on Logical Formalizations of Commonsense Reasoning (Com-
mon Sense 98), pp. 198–217, (1998).

[10] Marvin Minsky, Push Singh, and Aaron Sloman, ‘The st. thomas com-
mon sense symposium: Designing architectures for human-level intel-
ligence’, AI Magazine, 25(2), 113–124, (2004).

[11] Melanie Mitchell, An introduction to genetic algorithms, MIT Press,
1998.

[12] Muaz Niazi and Amir Hussain, ‘Agent-based computing from multi-
agent systems to agent-based models: a visual survey’, Scientometrics,
89(2), 479–499, (2011).

[13] Ilkka Niemelä, ‘Logic programs with stable model semantics as a con-
straint programming paradigm’, Annals of Mathematics and Artificial
Intelligence, 25(3-4), 241–273, (1999).

[14] Santiago Ontañón, José L. Montaña, and Avelino J. Gonzalez, ‘A
dynamic-bayesian network framework for modeling and evaluating
learning from observation’, Expert Syst. Appl., 41(11), 5212–5226,
(2014).

[15] Stuart J. Russell and Peter Norvig, Artificial Intelligence - A Modern
Approach (3. internat. ed.), Pearson Education, 2010.

[16] Kristinn R. Thórisson, ‘Integrated a.i. systems’, Minds and Machines,
17(1), 11–25, (2007).

[17] Kristinn R. Thórisson, Hrvoje Benko, Denis Abramov, Andrew Arnold,
Sameer Maskey, and Aruchunan Vaseekaran, ‘Constructionist design
methodology for interactive intelligences’, AI Magazine, 25(4), 77–90,
(2004).

[18] Michael J. Wooldridge, An Introduction to MultiAgent Systems (2. ed.),
Wiley, 2009.

[19] Kai yuh Hsiao, Peter Gorniak, and Deb Roy, ‘NetP: A network API for
building heterogeneous modular intelligent systems’, in Proceedings
of the AAAI 2005 Workshop on Modular Construction of Human-Like
Intelligence, (2005).

61

Towards Large-scale Inconsistency Measurement1

Matthias Thimm2

Abstract. We investigate the problem of inconsistency measure-
ment on large knowledge bases by considering stream-based incon-
sistency measurement, i. e., we investigate inconsistency measures
that cannot consider a knowledge base as a whole but process it
within a stream. For that, we present, first, a novel inconsistency
measure that is apt to be applied to the streaming case and, second,
stream-based approximations for the new and some existing incon-
sistency measures. We conduct an extensive empirical analysis on the
behavior of these inconsistency measures on large knowledge bases,
in terms of runtime, accuracy, and scalability. We conclude that for
two of these measures, the approximation of the new inconsistency
measure and an approximation of the contension inconsistency mea-
sure, large-scale inconsistency measurement is feasible.

1 Introduction
Inconsistency measurement [2] is a subfield of Knowledge Represen-
tation and Reasoning (KR) that is concerned with the quantitative as-
sessment of the severity of inconsistencies in knowledge bases. Con-
sider the following two knowledge bases K1 and K2 formalized in
propositional logic:

K1 = {a, b ∨ c,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

Both knowledge bases are classically inconsistent as for K1 we
have {a,¬a ∧ ¬b} |=⊥ and for K2 we have, e. g., {a,¬a} |=⊥.
These inconsistencies render the knowledge bases useless for rea-
soning if one wants to use classical reasoning techniques. In order
to make the knowledge bases useful again, one can either use non-
monotonic/paraconsistent reasoning techniques [11, 12] or one re-
vises the knowledge bases appropriately to make them consistent [4].
Looking again at the knowledge bases K1 and K2 one can observe
that the severity of their inconsistency is different. In K1, only two
out of four formulas (a and ¬a∧¬b) are participating in makingK1

inconsistent while forK2 all formulas contribute to its inconsistency.
Furthermore, for K1 only two propositions (a and b) participate in
a conflict and using, e. g., paraconsistent reasoning one could still
infer meaningful statements about c and d. For K2 no such state-
ment can be made. This leads to the assessment that K2 should be
regarded more inconsistent than K1. Inconsistency measures can be
used to quantitatively assess the inconsistency of knowledge bases
and to provide a guide for how to repair them, cf. [3]. Moreover, they
can be used as an analytical tool to assess the quality of knowledge
representation. For example, one simple inconsistency measure is to
take the number of minimal inconsistent subsets (MIs) as an indicator
for the inconsistency: the more MIs a knowledge base contains, the

1 This paper has also been published in the Proceedings of the 37th German
Conference on Artificial Intelligence (KI 2014)

2 Institute for Web Science and Technologies, University of Koblenz-Landau,
Germany, thimm@uni-koblenz.de

more inconsistent it is. For K1 we have then 1 as its inconsistency
value and for K2 we have 2.

In this paper, we consider the computational problems of incon-
sistency measurement, particularly with respect to scalable incon-
sistency measurement on large knowledge bases, as they appear in,
e. g., Semantic Web applications. To this end we present a novel in-
consistency measure Ihs that approximates the η-inconsistency mea-
sure from [8] and is particularly apt to be applied to large knowledge
bases. This measure is based on the notion of a hitting set which (in
our context) is a minimal set of classical interpretations such that ev-
ery formula of a knowledge base is satisfied by at least one element
of the set. In order to investigate the problem of measuring inconsis-
tency in large knowledge bases we also present a stream-based pro-
cessing framework for inconsistency measurement. More precisely,
the contributions of this paper are as follows:

1. We present a novel inconsistency measure Ihs based on hitting
sets and show how this measure relates to other measures and, in
particular, that it is a simplification of the η-inconsistency measure
[8] (Section 3).

2. We formalize a theory of inconsistency measurement in streams
and provide approximations of several inconsistency measures for
the streaming case (Section 4).

3. We conduct an extensive empirical study on the behavior of those
inconsistency measures in terms of runtime, accuracy, and scala-
bility. In particular, we show that the stream variants of Ihs and of
the contension measure Ic are effective and accurate for measur-
ing inconsistency in the streaming setting and, therefore, in large
knowledge bases (Section 5).

We give necessary preliminaries for propositional logic and incon-
sistency measurement in Section 2 and conclude the paper with a
discussion in Section 6. Proofs of technical results can be found in
Appendix A.

2 Preliminaries
Let At be a propositional signature, i. e., a (finite) set of proposi-
tions, and let L(At) be the corresponding propositional language,
constructed using the usual connectives∧ (and),∨ (or), and¬ (nega-
tion). We use the symbol ⊥ to denote contradiction. Then a knowl-
edge base K is a finite set of formulas K ⊆ L(At). Let K(At) be
the set of all knowledge bases. We write K instead of K(At) when
there is no ambiguity regarding the signature. Semantics to L(At) is
given by interpretations ω : At → {true, false}. Let Int(At) denote
the set of all interpretations for At. An interpretation ω satisfies (or
is a model of) an atom a ∈ At, denoted by ω |= a (or ω ∈ Mod(a)),
if and only if ω(a) = true. Both |= and Mod(·) are extended to
arbitrary formulas, sets, and knowledge bases as usual.

Inconsistency measures are functions I : K → [0,∞) that aim
at assessing the severity of the inconsistency in a knowledge base K,

63

cf. [3]. The basic idea is that the larger the inconsistency in K the
larger the value I(K). However, inconsistency is a concept that is
not easily quantified and there have been a couple of proposals for
inconsistency measures so far, see e. g. [8, 10, 1, 2, 5, 13]. There are
two main paradigms for assessing inconsistency [5], the first being
based on the (number of) formulas needed to produce inconsisten-
cies and the second being based on the proportion of the language
that is affected by the inconsistency. Below we recall some popular
measures from both categories but we first introduce some necessary
notations. Let K ∈ K be some knowledge base.

Definition 1. A set M ⊆ K is called minimal inconsistent subset
(MI) of K if M |=⊥ and there is no M ′ ⊂ M with M ′ |=⊥. Let
MI(K) be the set of all MIs of K.

Definition 2. A formula α ∈ K is called free formula of K if there
is no M ∈ MI(K) with α ∈ M . Let Free(K) denote the set of all
free formulas of K.

We adopt the following definition of a (basic) inconsistency mea-
sure from [3].

Definition 3. A basic inconsistency measure is a function I : K →
[0,∞) that satisfies the following three conditions:

1. I(K) = 0 if and only if K is consistent,
2. if K ⊆ K′ then I(K) ≤ I(K′), and
3. for all α ∈ Free(K) we have I(K) = I(K \ {α}).

The first property (also called consistency) of a basic inconsis-
tency measure ensures that all consistent knowledge bases receive a
minimal inconsistency value and every inconsistent knowledge base
receive a positive inconsistency value. The second property (also
called monotony) states that the value of inconsistency can only in-
crease when adding new information. The third property (also called
free formula independence) states that removing harmless formulas
from a knowledge base—i. e., formulas that do not contribute to the
inconsistency—does not change the value of inconsistency. For the
remainder of this paper we consider the following selection of in-
consistency measures: the MI measure IMI, the MIc measure IMIc ,
the contension measure Ic, and the η measure Iη , which will be
defined below, cf. [3, 8]. In order to define the contension mea-
sure Ic we need to consider three-valued interpretations for proposi-
tional logic [12]. A three-valued interpretation υ on At is a function
υ : At → {T, F,B} where the values T and F correspond to the
classical true and false, respectively. The additional truth value B
stands for both and is meant to represent a conflicting truth value
for a proposition. The function υ is extended to arbitrary formulas
as shown in Table 1. Then, an interpretation υ satisfies a formula α,
denoted by υ |=3 α if either υ(α) = T or υ(α) = B.

For defining the η-inconsistency measure [8] we need to consider
probability functions P of the form P : Int(At) → [0, 1] with∑
ω∈Int(At) P (ω) = 1. Let P(At) be the set of all those probabil-

ity functions and for a given probability function P ∈ P(At) define
the probability of an arbitrary formula α via P (α) =

∑
ω|=α P (ω).

Definition 4. Let IMI, IMIc , Ic, and Iη be defined via

IMI(K) = |MI(K)|,

IMIc(K) =
∑

M∈MI(K)

1

|M | ,

Ic(K) = min{|υ−1(B)| | υ |=3 K},
Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

The measure IMI takes the number of minimal inconsistent subsets
of a knowledge base as an indicator for the amount of inconsistency:
the more minimal inconsistent subsets the more severe the incon-
sistency. The measure IMIc refines this idea by also taking the size
of the minimal inconsistent subsets into account. Here the idea is
that larger minimal inconsistent subsets indicate are less severe than
smaller minimal inconsistent subsets (the less formulas are needed to
produce an inconsistency the more “obvious” the inconsistency). The
measure Ic considers the set of three-valued models of a knowledge
base (which is always non-empty) and uses the minimal number of
propositions with conflicting truth value as an indicator for incon-
sistency. Finally, the measure Iη (which always assigns an inconsis-
tency value between 0 and 1) looks for the maximal probability one
can assign to every formula of a knowledge base. All these measures
are basic inconsistency measures as defined in Definition 3.

Example 1. For the knowledge bases K1 = {a, b ∨ c,¬a ∧
¬b, d} and K2 = {a,¬a, b, ¬b} from the introduction we obtain
IMI(K1) = 1, IMIc(K1) = 0.5, Ic(K1) = 2, Iη(K1) = 0.5,
IMI(K2) = 2, IMIc(K2) = 1, Ic(K2) = 2, Iη(K2) = 0.5.

For a more detailed introduction to inconsistency measures see
e. g. [2, 3, 8] and for some recent developments see e. g. [1, 7].

As for computational complexity, the problem of computing an
inconsistency value wrt. any of the above inconsistency measures
is at least FNP-hard3 as it contains a satisfiability problem as a sub
problem.

3 An Inconsistency Measure based on Hitting Sets
The basic idea of our novel inconsistency measure Ihs is inspired by
the measure Iη which seeks a probability function that maximizes
the probability of all formulas of a knowledge base. Basically, the
measure Iη looks for a minimal number of models of parts of the
knowledge base and maximizes their probability in order to maxi-
mize the probability of the formulas. By just considering this basic
idea we arrive at the notion of a hitting set for inconsistent knowledge
bases.

Definition 5. A subset H ⊂ Int(At) is called a hitting set of K if
for every α ∈ K there is ω ∈ H with ω |= α. H is called a card-
minimal hitting set if it is minimal wrt. cardinality. Let hK be the
cardinality of any card-minimal hitting set (define hK =∞ if there
does not exist a hitting set of K).

Definition 6. The function Ihs : K → [0,∞] is defined via
Ihs(K) = hK − 1 for every K ∈ K.

Note, that if a knowledge base K contains a contradictory formula
(e. g. a ∧ ¬a) we have Ihs(K) = ∞. In the following, we assume
that K contains no such contradictory formulas.

Example 2. Consider the knowledge base K3 defined via

K3 = {a ∨ d, a ∧ b ∧ c, b,¬b ∨ ¬a, a ∧ b ∧ ¬c, a ∧ ¬b ∧ c}

Then {ω1, ω2, ω3} ⊂ Int(At) with ω1(a) = ω1(b) = ω1(c) = true,
ω2(a) = ω2(c) = true, ω1(b) = false, and ω3(a) = ω3(b) = true,
ω3(c) = false is a card-minimal hitting set for K3 and therefore
Ihs(K3) = 2. Note that for the knowledge bases K1 and K2 from
Example 1 we have Ihs(K1) = Ihs(K2) = 1.

3 FNP is the generalization of the class NP to functional problems.

64

Table 1 Truth tables for propositional three-valued logic [12].

α β α ∧ β α ∨ β ¬α α β α ∧ β α ∨ β ¬α α β α ∧ β α ∨ β ¬α
T T T T F B T B T B F T F T T
T B B T F B B B B B F B F B T
T F F T F B F F B B F F F F T

Proposition 1. The function Ihs is a (basic) inconsistency measure.

The result below shows that Ihs also behaves well with some more
properties mentioned in the literature [5, 13]. For that, we denote with
At(F) for a formula or a set of formulas F the set of propositions
appearing in F . Furthermore, two knowledge basesK1,K2 are semi-
extensionally equivalent (K1 ≡σ K2) if there is a bijection σ : K1 →
K2 such that for all α ∈ K1 we have α ≡ σ(α).

Proposition 2. The measure Ihs satisfies the following properties:

• If α ∈ K is such that At(α) ∩ At(K \ {α}) = ∅ then Ihs(K) =
Ihs(K \ {α}) (safe formula independence).

• If K ≡σ K′ then Ihs(K) = Ihs(K′) (irrelevance of syntax).
• If α |= β and α 6|=⊥ then Ihs(K ∪ {α}) ≥ Ihs(K ∪ {β})

(dominance).

The measure Ihs can also be nicely characterized by a consistent
partitioning of a knowledge base.

Definition 7. A set Φ = {Φ1, . . . ,Φn} with Φ1 ∪ . . . ∪ Φn = K
and Φi ∩ Φj = ∅ for i, j = 1, . . . , n, i 6= j, is called a partitioning
of K. A partitioning Φ = {Φ1, . . . ,Φn} is consistent if Φi 6|=⊥ for
i = 1, . . . , n. A consistent partitioning Φ is called card-minimal if
it is minimal wrt. cardinality among all consistent partitionings ofK.

Proposition 3. A consistent partitioning Φ is a card-minimal parti-
tioning of K if and only if Ihs(K) = |Φ| − 1.

As Ihs is inspired by Iη we go on by comparing these two mea-
sures.

Proposition 4. Let K be a knowledge base. If ∞ > Ihs(K) > 0
then

1− 1

Ihs(K)
< Iη(K) ≤ 1− 1

Ihs(K) + 1

Note that for Ihs(K) = 0 we always have Iη(K) = 0 as well, as
both are basic inconsistency measures.

Corollary 1. If Iη(K1) ≤ Iη(K2) then Ihs(K1) ≤ Ihs(K2).

However, the measures Iη and Ihs are not equivalent as the fol-
lowing example shows.

Example 3. Consider the knowledge bases K1 = {a,¬a} and
K2 = {a, b,¬a ∨ ¬b}. Then we have Ihs(K1) = Ihs(K2) = 1
but Iη(K1) = 0.5 > 1/3 = Iη(K2).

It follows that the order among knowledge bases induced by Iη
is a refinement of the order induced by Ihs. However, Ihs is better
suited for approximation in large knowledge bases than Iη , cf. the
following section.

The idea underlying Ihs is also similar to the contension inconsis-
tency measure Ic. However, these measures are not equivalent as the
following example shows.

Example 4. Consider the knowledge bases K1 and K2 given as

K1 = {a ∧ b ∧ c,¬a ∧ ¬b ∧ ¬c} K2 = {a ∧ b,¬a ∧ b, a ∧ ¬b}
Then we have Ihs(K1) = 2 < 3 = Ihs(K2) but Ic(K1) = 3 >
2 = Ic(K2).

4 Inconsistency Measurement in Streams
In the following, we discuss the problem of inconsistency measure-
ment in large knowledge bases. We address this issue by using a
stream-based approach of accessing the formulas of a large knowl-
edge base. Formulas of a knowledge base then need to be processed
one by one by a stream-based inconsistency measure. The goal of
this formalization is to obtain stream-based inconsistency measures
that approximate given inconsistency measures when the latter would
have been applied to the knowledge base as a whole. We first for-
malize this setting and, afterwards, provide concrete approaches for
some inconsistency measures.

4.1 Problem Formalization
We use a very simple formalization of a stream that is sufficient for
our needs.

Definition 8. A propositional stream S is a function S : N →
L(At). Let S be the set of all propositional streams.

A propositional stream models a sequence of propositional for-
mulas. On a wider scope, a propositional stream can also be in-
terpreted as a very general abstraction of the output of a linked
open data crawler (such as LDSpider [6]) that crawls knowledge for-
malized as RDF (Resource Description Framework) from the web,
enriched, e. g. with OWL semantics. We model large knowledge
bases by propositional streams that indefinitely repeat the formu-
las of the knowledge base. For that, we assume for a knowledge
base K = {φ1, . . . , φn} the existence of a canonical enumeration
Kc = 〈φ1, . . . , φn〉 of the elements of K. This enumeration can be
arbitrary and has no specific meaning other than to enumerate the
elements in an unambiguous way.

Definition 9. Let K be a knowledge base and Kc = 〈φ1, . . . , φn〉
its canonical enumeration. The K-stream SK is defined as SK(i) =
φ(imodn)+1 for all i ∈ N.

Given a K-stream SK and an inconsistency measure I we aim at
defining a method that processes the elements of SK one by one and
approximates I(K).

Definition 10. A stream-based inconsistency measure J is a func-
tion J : S× N→ [0,∞).

Definition 11. Let I be an inconsistency measure and J a stream-
based inconsistency measure. ThenJ approximates (or is an approx-
imation of) I if for all K ∈ K we have limi→∞ J (SK, i) = I(K).

4.2 A Naive Window-based Approach
The simplest form of implementing a stream-based variant of any al-
gorithm or function is to use a window-based approach, i. e., to con-
sider at any time point a specific excerpt from the stream and apply
the original algorithm or function on this excerpt. For any propo-
sitional stream S let Si,j (for i ≤ j) be the knowledge base ob-
tained by taking the formulas from S between positions i and j, i. e.,
Si,j = {S(i), . . . ,S(j)}.

65

Definition 12. Let I be an inconsistency measure, w ∈ N ∪ {∞},
and g some function g : [0,∞) × [0,∞) → [0,∞) with g(x, y) ∈
[min{x, y},max{x, y}]. We define the naive window-based mea-
sure J w,gI : S× N→ [0,∞) via

J w,gI (S, i) =

{
0 if i = 0

g(I(Smax{0,i−w},i),J w,gI (S, i− 1)) otherwise

for every S and i ∈ N.

The function g in the above definition is supposed to be an aggre-
gation function that combines the new obtained inconsistency value
I(Smax{0,i−w},i

K) with the previous valueJ w,gI (S, i−1). This func-
tion can be ,e. g., the maximum function max or a smoothing func-
tion gα(x, y) = αx + (1 − α)y for some α ∈ [0, 1] (for every
x, y ∈ [0,∞)).

Proposition 5. Let I be an inconsistency measure, w ∈ N ∪ {∞},
and g some function g : [0,∞) × [0,∞) → [0,∞) with g(x, y) ∈
[min{x, y},max{x, y}].
1. If w is finite then J w,gI is not an approximation of I.
2. If w = ∞ and g(x, y) > min{x, y} if x 6= y then J w,gI is an

approximation of I.
3. J w,gI (SK, i) ≤ I(K) for every K ∈ K and i ∈ N.

4.3 Approximation Algorithms for Ihs and Ic
The approximation algorithms for Ihs and Ic that are presented in
this subsection are using concepts of the programming paradigms of
simulated annealing and genetic programming [9]. Both algorithms
follow the same idea and we will only formalize the one for Ihs and
give some hints on how to adapt it for Ic.

The basic idea for the stream-based approximation of Ihs is as fol-
lows. At any processing step we maintain a candidate setC ∈ 2Int(At)

(initialized with the empty set) that approximates a hitting set of the
underlying knowledge base. At the beginning of a processing step
we make a random choice (with decreasing probability the more for-
mulas we already encountered) whether to remove some element of
C. This action ensures that C does not contain superfluous elements.
Afterwards we check whether there is still an interpretation in C that
satisfies the currently encountered formula. If this is not the case we
add some random model of the formula to C. Finally, we update
the previously computed inconsistency value with |C| − 1, taking
also some aggregation function g (as for the naive window-based
approach) into account. In order to increase the probability of suc-
cessfully finding a minimal hitting set we do not maintain a single
candidate set C but a (multi-)set Cand = {C1, . . . , Cm} for some
previously specified parameter m ∈ N and use the average size of
these candidate hitting sets.

Definition 13. Let m ∈ N, g some function g : [0,∞)× [0,∞)→
[0,∞) with g(x, y) ∈ [min{x, y},max{x, y}], and f : N → [0, 1]
some monotonically decreasing function with limn→∞ f(n) = 0.
We define Jm,g,fhs via

Jm,g,fhs (S, i) =

{
0 if i = 0

update
m,g,f
hs (S(i)) otherwise

for every S and i ∈ N. The function update
m,g,f
hs is depicted in

Algorithm 1.

At the first call of the algorithm update
m,g,f
hs the value of

currentV alue (which contains the currently estimated inconsis-
tency value) is initialized to 0 and the (mulit-)set Cand ⊆ 2Int(At)

Algorithm 1 update
m,g,f
hs (form)

1: Initialize currentV alue and Cand
2: N = N + 1
3: newV alue = 0
4: for all C ∈ Cand do
5: rand ∈ [0, 1]
6: if rand < f(N) then
7: Remove some random ω from C
8: if ¬∃ω ∈ C : ω |= form then
9: Add random ω ∈ Mod(form) to C

10: newV alue = newV alue+ (|C| − 1)/|Cand|
11: currentV alue = g(newV alue, currentV alue)
12: return currentV alue

(which contains a population of candidate hitting sets) is initialized
with m empty sets. The function f can be any monotonically de-
creasing function with limn→∞ f(n) = 0 (this ensures that at any
candidate C reaches some stable result). The parameter m increases
the probability that at least one of the candidate hitting sets attains
the global optimum of a card-minimal hitting set.

As Jm,g,fhs is a random process we cannot show that Jm,g,fhs is an
approximation of Ihs in the general case. However, we can give the
following result.

Proposition 6. For every probability p ∈ [0, 1), g some function g :
[0,∞) × [0,∞) → [0,∞) with g(x, y) ∈ [min{x, y},max{x, y}]
and g(x, y) > min{x, y} if x 6= y, a monotonically decreasing
function f : N → [0, 1] with limn→∞ f(n) = 0, and K ∈ K there
is m ∈ N such that with probability greater or equal p it is the case
that

lim
i→∞

Jm,g,fhs (SK, i) = Ihs(K)

This result states that Jm,g,fhs indeed approximates Ihs if we
choose the number of populations large enough. In the next section
we will provide some empirical evidence that even for small values
of m results are satisfactory.

Both Definition 13 and Algorithm 1 can be modified slightly in
order to approximate Ic instead of Ihs, yielding a new measure
Jm,g,fc . For that, the set of candidates Cand contains three-valued
interpretations instead of sets of classical interpretations. In line 7,
we do not remove an interpretation from C but flip some arbitrary
proposition from B to T or F . Similarly, in line 9 we do not add
an interpretation but flip some propositions to B in order to satisfy
the new formula. Finally, the inconsistency value is determined by
taking the number of B-valued propositions. For more details see
the implementations of both Jm,g,fhs and Jm,g,fc , which will also be
discussed in the next section.

5 Empirical Evaluation
In this section we describe our empirical experiments on runtime,
accuracy, and scalability of some stream-based inconsistency mea-
sures. Our Java implementations4 have been added to the Tweety
Libraries for Knowledge Representation [14].
4 IMI, IMIc , Iη , Jw,g

I :
http://mthimm.de/r?r=tweety-inc-commons
Ic, Ihs: http://mthimm.de/r?r=tweety-inc-pl
Jm,g,f
hs : http://mthimm.de/r?r=tweety-stream-hs

Jm,g,f
c : http://mthimm.de/r?r=tweety-stream-c

Evaluation framework: http://mthimm.de/r?r=
tweety-stream-eval

66

Table 2 Runtimes for the evaluated measures; each value is averaged over 100 random knowledge bases of 5000 formulas; the total runtime is
after 40000 iterations

Measure RT (iteration) RT (total) Measure RT (iteration) RT (total)

J 500,max
IMI

198ms 133m J 10,g0.75,f1
c 0.16ms 6.406s

J 1000,max
IMI

359ms 240m J 100,g0.75,f1
c 1.1ms 43.632s

J 2000,max
IMI

14703ms 9812m J 500,g0.75,f1
c 5.21ms 208.422s

J 500,max
IMIc

198ms 134m J 10,g0.75,f1
hs 0.07ms 2.788s

J 1000,max
IMIc

361ms 241m J 100,g0.75,f1
hs 0.24ms 9.679s

J 2000,max
IMIc

14812ms 9874m J 500,g0.75,f1
hs 1.02ms 40.614s

5.1 Evaluated Approaches
For our evaluation, we considered the inconsistency measures IMI,
IMIc , Iη , Ic, and Ihs. We used the SAT solver lingeling5 for the
sub-problems of determining consistency and to compute a model of
a formula. For enumerating the set of MIs of a knowledge base (as
required by IMI and IMIc) we used MARCO6. The measure Iη was
implemented using the linear optimization solver lp solve7. The mea-
sures IMI, IMIc , and Iη were used to define three different versions of
the naive window-based measure J w,gI (with w = 500, 1000, 2000
and g = max). For the measures Ic and Ihs we tested each three
versions of their streaming variants Jm,g0.75,f1c and Jm,g0.75,f1hs

(with m = 10, 100, 500) with f1 : N → [0, 1] defined via
f1(i) = 1/(i + 1) for all i ∈ N and g0.75 is the smoothing func-
tion for α = 0.75 as defined in the previous section.

5.2 Experiment Setup
For measuring the runtime of the different approaches we generated
100 random knowledge bases in CNF (Conjunctive Normal Form)
with each 5000 formulas (=disjunctions) and 30 propositions. For
each generated knowledge base K we considered its K-stream and
processing of the stream was aborted after 40000 iterations. We fed
the K-stream to each of the evaluated stream-based inconsistency
measures and measured the average runtime per iteration and the to-
tal runtime. For each iteration, we set a time-out of 2 minutes and
aborted processing of the stream completely if a time-out occurred.

In order to measure accuracy, for each of the considered ap-
proaches we generated another 100 random knowledge bases with
specifically set inconsistency values8, used otherwise the same set-
tings as above, and measured the returned inconsistency values.

To evaluate the scalability of our stream-based approach of Ihs we
conducted a third experiment9 where we fixed the number of propo-
sitions (60) and the specifically set inconsistency value (200) and
varied the size of the knowledge bases from 5000 to 50000 (with
steps of 5000 formulas). We measured the total runtime up to the
point when the inconsistency value was within a tolerance of ±1 of
the expected inconsistency value.

The experiments were conducted on a server with two Intel Xeon
X5550 QuadCore (2.67 GHz) processors with 8 GB RAM running
SUSE Linux 2.6.
5 http://fmv.jku.at/lingeling/
6 http://sun.iwu.edu/˜mliffito/marco/
7 http://lpsolve.sourceforge.net
8 The sampling algorithms can be found at
http://mthimm.de/r?r=tweety-sampler

9 We did the same experiment with our stream-based approach of Ic but do
not report the results due to the similarity to Ihs and space restrictions.

5.3 Results

Our first observation concerns the inconsistency measure Iη which
proved to be not suitable to work on large knowledge bases10. Com-
puting the value Iη(K) for some knowledge baseK includes solving
a linear optimization problem over a number of variables which is
(in the worst-case) exponential in the number of propositions of the
signature. In our setting with |At| = 30 the generated optimization
problem contained therefore 230 = 1073741824 variables. Hence,
even the optimization problem itself could not be constructed within
the timeout of 2 minutes for every step. As we are not aware of any
more efficient implementation of Iη , we will not report on further
results for Iη in the following.

As for the runtime of the naive window-based approaches of IMI

and IMIc and our stream-based approaches for Ic and Ihs see Ta-
ble 2. There one can see that J w,gIMI

and J w,gIMIc
on the one hand, and

Jm,g,fc and Jm,g,fhs on the other hand, have comparable runtimes,
respectively. The former two have almost identical runtimes, which
is obvious as the determination of the MIs is the main problem in
both their computations. Clearly, Jm,g,fc and Jm,g,fhs are signifi-
cantly faster per iteration (and in total) than J w,gIMI

and J w,gIMIc
, only

very few milliseconds for the latter and several hundreds and thou-
sands of milliseconds for the former (for all variants of m and w).
The impact of increasing w for Jm,g,fc and Jm,g,fhs is expectedly
linear while the impact of increasing the window size w for J w,gIMI
and J w,gIMIc

is exponential (this is also clear as both solve an FNP-
hard problem).

As for the accuracy of the different approaches see Figure 1 (a)–
(d). There one can see that both Jm,g,fhs and Jm,g,fc (Figures 1a and
1b) converge quite quickly (almost right after the knowledge base
has been processed once) into a [−1, 1] interval around the actual
inconsistency value, where Jm,g,fc is even closer to it. The naive
window-based approaches (Figures 1c and 1d) have a comparable
bad performance (this is clear as those approaches cannot see all MIs
at any iteration due to the limited window size). Surprisingly, the
impact of larger values of m for Jm,g,fhs and Jm,g,fc is rather small
in terms of accuracy which suggests that the random process of our
algorithm is quite robust. Even for m = 10 the results are quite
satisfactory.

As for the scalability of Jm,g0.75,f1hs see Figure 1e. There one can
observe a linear increase in the runtime of all variants wrt. the size
of the knowledge base. Furthermore, the difference between the vari-
ants is also linearly in the parameter m (which is also clear as each
population is an independent random process). It is noteworthy, that

10 More precisely, our implementation of the measure proved to be not suit-
able for this setting

67

10000 20000 30000 40000

1
2
3
4
5
6

#iterations

In
co

ns
is

te
nc

y
va

lu
e

m = 10
m = 100
m = 500

(a) Accuracy Jm,g0.75,f1
hs

10000 20000 30000 40000

1
2
3
4
5
6

#iterations

In
co

ns
is

te
nc

y
va

lu
e

m = 10
m = 100
m = 500

(b) Accuracy Jm,g0.75,f1
c

10000 20000 30000 40000

5

10

15

20

#iterations

In
co

ns
is

te
nc

y
va

lu
e

w = 500
w = 1000
w = 2000

(c) Accuracy Jw,max
IMI

10000 20000 30000 40000

1
2
3
4
5

#iterations

In
co

ns
is

te
nc

y
va

lu
e

w = 500
w = 1000
w = 2000

(d) Accuracy Jw,max
IcMI

10k 20k 30k 40k 50k

500
1000
1500
2000

|K|

R
T

in
s

(to
ta

l)

m = 10
m = 100
m = 500

(e) Scalability Jm,g0.75,f1
hs

Figure 1: (a)–(d): Accuracy performance for the evaluated measures
(dashed line is actual inconsistency value); each value is averaged
over 100 random knowledge bases of 5000 formulas (30 proposi-
tions) with varying inconsistency values; (e): Evaluation of the scal-
ability ofJm,g0.75,f1hs ; each value is averaged over 10 random knowl-
edge bases of the given size

the average runtime forJ 10,g0.75,f1
hs is about 66.1 seconds for knowl-

edge bases with 50000 formulas. As the significance of the parameter
m for the accuracy is also only marginal, the measure J 10,g0.75,f1

hs

is clearly an effective and accurate stream-based inconsistency mea-
sure.

6 Discussion and Conclusion

In this paper we discussed the issue of large-scale inconsistency mea-
surement and proposed novel approximation algorithms that are ef-
fective for the streaming case. To the best of our knowledge, the
computational issues for measuring inconsistency, in particular with
respect to scalability problems, have not yet been addressed in the
literature before. One exception is the work by Ma and colleagues
[10] who present an anytime algorithm that approximates an incon-
sistency measure based on a 4-valued paraconsistent logic (similar
to the contension inconsistency measure). The algorithm provides
lower and upper bounds for this measure and can be stopped at any
point in time with some guaranteed quality. The main difference be-
tween our framework and the algorithm of [10] is that the latter needs
to process the whole knowledge base in each atomic step and is there-
fore not directly applicable for the streaming scenario. The empiri-
cal evaluation [10] also suggests that our streaming variant of Ihs is
much more performant as Ma et al. report an average runtime of their
algorithm of about 240 seconds on a knowledge base with 120 for-
mulas and 20 propositions (no evaluation on larger knowledge bases
is given) while our measure has a runtime of only a few seconds for
knowledge bases with 5000 formulas with comparable accuracy11. A
deeper comparison of these different approaches is planned for future
work.

Our work showed that inconsistency measurement is not only a
theoretical field but can actually be applied to problems of reasonable
size. In particular, our stream-based approaches of Ihs and Ic are
accurate and effective for measuring inconsistencies in large knowl-
edge bases. Current and future work is about the application of our
work on linked open data sets [6].

REFERENCES
[1] J. Grant and A. Hunter, ‘Distance-based Measures of Inconsistency’, in

Proceedings of the 12th Europen Conference on Symbolic and Quanti-
tative Approaches to Reasoning with Uncertainty (ECSQARU’13), pp.
230–241, (2013).

[2] John Grant and Anthony Hunter, ‘Measuring inconsistency in knowl-
edgebases’, Journal of Intelligent Information Systems, 27, 159–184,
(2006).

[3] John Grant and Anthony Hunter, ‘Measuring consistency gain and in-
formation loss in stepwise inconsistency resolution’, in Proc. of the
11th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU 2011), pp. 362–373, (2011).

[4] S. O. Hansson, A Textbook of Belief Dynamics, Kluwer Academic Pub-
lishers, 2001.

[5] Anthony Hunter and Sebastien Konieczny, ‘On the measure of conflicts:
Shapley inconsistency values’, Artificial Intelligence, 174(14), 1007–
1026, (July 2010).

[6] Robert Isele, Jürgen Umbrich, Chris Bizer, and Andreas Harth, ‘LDSpi-
der: An open-source crawling framework for the web of linked data’,
in Proceedings of 9th International Semantic Web Conference (ISWC
2010) Posters and Demos, (2010).

[7] Said Jabbour, Yue Ma, and Badran Raddaoui, ‘Inconsistency measure-
ment thanks to mus decomposition’, in Proc. of the 13th Int. Conference
on Autonomous Agents and Multiagent Systems, (2014).

11 Although hardware specifications for these experiments are different this
huge difference is significant.

68

[8] Kevin M. Knight, A Theory of Inconsistency, Ph.D. dissertation, Uni-
versity Of Manchester, 2002.

[9] D. Lawrence, Genetic Algorithms and Simulated Annealing, Pitman
Publishing, 1987.

[10] Yue Ma, Guilin Qi, Guohui Xiao, Pascal Hitzler, and Zuoquan Lin,
‘An anytime algorithm for computing inconsistency measurement’, in
Knowledge Science, Engineering and Management, 29–40, Springer,
(2009).

[11] D. Makinson, Bridges from Classical to Nonmonotonic Logic, College
Publications, 2005.

[12] G. Priest, ‘Logic of Paradox’, Journal of Philosophical Logic, 8, 219–
241, (1979).

[13] Matthias Thimm, ‘Inconsistency measures for probabilistic logics’, Ar-
tificial Intelligence, 197, 1–24, (April 2013).

[14] Matthias Thimm, ‘Tweety - A Comprehensive Collection of Java Li-
braries for Logical Aspects of Artificial Intelligence and Knowledge
Representation’, in Proceedings of the 14th Int. Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’14), (2014).

A Proofs of technical results
Proposition 1. The function Ihs is a (basic) inconsistency measure.

Proof. We have to show that properties 1.), 2.), and 3.) of Defini-
tion 3 are satisfied.

1. If K is consistent there is a ω ∈ Int(At) such that ω |= α for
every α ∈ K. Therefore, H = {ω} is a card minimal hitting set
and we have hK = 1 and therefore Ihs(K) = 0. Note that for
inconsistent K we always have hK > 1.

2. Let K ⊆ K′ and let H be a card-minimal hitting set of K′. Then
H is also a hitting set of K (not necessarily a card-minimal one).
Therefore, we have hK ≤ hK′ and Ihs(K) ≤ Ihs(K′).

3. Let α ∈ Free(K) and define K′ = K \ {α}. Let H be a card-
minimal hitting set of K′ and let ω ∈ H . Furthermore, let K′′ ⊆
K′ be the set of all formulas such that ω |= β for all β ∈ K′′. It
follows thatK′′ is consistent. As α is a free formula it follows that
K′′ ∪ {α} is also consistent (otherwise there would be a minimal
inconsistent subset of K′′ containing α). Let ω′ be a model of
K′′ ∪ {α}. Then H ′ = (H \ {ω}) ∪ {ω′} is a hitting set of K
and due to 2.) also card-minimal. Hence, we have hK′ = hK and
Ihs(K′) = Ihs(K).

Proposition 2. The measure Ihs satisfies the following properties:

• If α ∈ K is such that At(α) ∩ At(K \ {α}) = ∅ then Ihs(K) =
Ihs(K \ {α}) (safe formula independence).

• If K ≡σ K′ then Ihs(K) = Ihs(K′) (irrelevance of syntax).
• If α |= β and α 6|=⊥ then Ihs(K ∪ {α}) ≥ Ihs(K ∪ {β})

(dominance).

Proof.

• This is satisfied as safe formula independence follows from free
formula independence, cf. [5, 13].

• Let H be a card-minimal hitting set of K. So, for every α ∈ K
we have ω ∈ H with ω |= α. Due to α ≡ σ(α) we also have
ω |= σ(α) and, thus for very β ∈ K′ we have ω ∈ H with
ω |= β. So H is also a hitting set of K′. Minimality follows from
the fact that σ is a bijection.

• Let H be a card-minimal hitting set of K1 = K ∪ {α} and let
ω ∈ H be such that ω |= α. Then we also have that ω |= β and
H is also a hitting set of K2 = K ∪ {β}. Hence, hK1 ≥ hK2 and
Ihs(K1) ≥ Ihs(K2).

Proposition 3. A consistent partitioning Φ is a card-minimal parti-
tioning of K if and only if Ihs(K) = |Φ| − 1.

Proof. Let Φ = {Φ1, . . . ,Φn} be a consistent partitioning and let
ωi ∈ Int(At) be such that ωi |= Φi (for i = 1, . . . , n). Then
{ω1, . . . , ωn} is a hitting set of K and we have hK ≤ |Φ|. With the
same idea one obtains a consistent partitioning Φ from every hitting
set H of K and thus hK ≥ |Φ′| for every card-minimal partitioning
ofK. Hence, Ihs(K) = |Φ|− 1 for every card-minimal partitioning
Φ of K.

Proposition 4. Let K be a knowledge base. If ∞ > Ihs(K) > 0
then

1− 1

Ihs(K)
< Iη(K) ≤ 1− 1

Ihs(K) + 1

Proof. For the right inequality, let H be a card-minimal hitting set
of K, i. e., we have Ihs(K) = |H| − 1. Define a probability func-
tion P : Int(At) → [0, 1] via P (ω) = 1/|H| for every ω ∈ H and
P (ω′) = 0 for every ω′ ∈ Int(At)\H (note that P is indeed a prob-
ability function). As H is a hitting set of K we have that P (φ) ≥
1/|H| for every φ ∈ K as at least one model of φ gets probability
1/|H| in P . So we have Iη ≤ 1 − 1/|H| = 1 − 1/(Ihs(K) + 1).
For the left inequality we only sketch a proof. Assume that Iη(K) ≤
1/2, then we have to show that Ihs(K) < 2 which is equivalent to
Ihs(K) ≤ 1 as the co-domain of Ihs is a subset of the natural num-
bers. If Iη(K) ≤ 1/2 then there is a probability function P with
P (φ) ≥ 1/2 for all φ ∈ K. Let ΓP = {ω ∈ Int(At) | P (ω) > 0}
and observe

∑
ω∈ΓP

P (ω) = 1. Without loss of generality assume
that P (ω) = P (ω′) for all ω, ω′ ∈ ΓP

12. Then every φ ∈ K has to
be satisfied by at least half of the interpretations in ΓP in order for
P (φ) =

∑
ω∈ΓP ,ω|=φ P (ω) ≥ 1/2 to hold. Then due to combinato-

rial reasons there have to be ω1, ω2 ∈ ΓP such that either ω1 |= φ or
ω2 |= φ for every φ ∈ K. Therefore, {ω1, ω2} is a hitting set and we
have Ihs(K) ≤ 1. By analogous reasoning we obtain Ihs(K) ≤ 2
if Iη(K) ≤ 2/3 (and therefore P (φ) ≥ 1/3 for all φ ∈ K) and the
general case Ihs(K) ≤ i if Iη(K) ≤ (i− 1)/i and, thus, the claim.
Note finally that Iη(K) = 1 if and only ifK contains a contradictory
formula which is equivalent to Ihs(K) =∞ and thus ruled out.

Corollary 1. If Iη(K1) ≤ Iη(K2) then Ihs(K1) ≤ Ihs(K2).

Proof. We show the contraposition of the claim, so assume
Ihs(K1) > Ihs(K2) which is equivalent to Ihs(K1) ≥ Ihs(K2)+1
as the co-domain of Ihs is a subset of the natural numbers. By Propo-
sition 4 we have

Iη(K1) > 1− 1

Ihs(K1)
≥ 1− 1

Ihs(K2) + 1
≥ Iη(K2)

which yields Iη(K1) > Iη(K2).

Proposition 5. Let I be an inconsistency measure, w ∈ N, and
g some function g : [0,∞) × [0,∞) → [0,∞) with g(x, y) ∈
[min{x, y},max{x, y}].
1. If w is finite then J w,gI is not an approximation of I.

12 Otherwise let k ∈ Q ∩ [0, 1] be the least common denominator of all
P (ω), ω ∈ ΓP , and replace in ΓP every ω by k duplicates of ω with
probability P (ω)/k each; for that note that P can always be defined using
only rational numbers, cf. [8]

69

2. If w = ∞ and g(x, y) > min{x, y} if x 6= y then J w,gI is an
approximation of I.

3. J w,gI (SK, i) ≤ I(K) for every K ∈ K and i ∈ N.

Proof.

1. Assume K is a minimal inconsistent set with |K| > w. Then
I(Smax{0,i−w},i) = 0 for all i > 0 (as every subset of K is
consistent) and J w,gI (S, i) = 0 for all i > 0 as well. As I is an
inconsistency measure it holds I(K) > 0 and, hence, J w,gI does
not approximate I.

2. If w = ∞ we have I(Smax{0,i−w},i) = I(K) for all i > i0 for
some i0 ∈ N. As g(x, y) > min{x, y} the value I(K) will be
approximated by J w,gI eventually.

3. This follows from the fact that I is a basic inconsistency measure
and therefore satisfies I(K) ≤ I(K′) for K ⊆ K′.

Proposition 6. For every probability p ∈ [0, 1), g some function g :
[0,∞) × [0,∞) → [0,∞) with g(x, y) ∈ [min{x, y},max{x, y}]
and g(x, y) > min{x, y} if x 6= y, a monotonically decreasing
function f : N → [0, 1] with limn→∞ f(n) = 0, and K ∈ K there
is m ∈ N such that with probability greater or equal p it is the case
that limi→∞ Jm,g,fhs (SK, i) = Ihs(K).

Sketch. Consider the evolution of single candidate set C1 ∈ Cand
during the iterated execution of update

m,g,f
hs (form), initialized

with the empty set ∅. Furthermore, let Ĉ be a card-minimal hitting
set of K. In every iteration the probability of selecting one ω ∈ Ĉ
to be added to C1 is greater zero as at least one ω ∈ Ĉ is a model
of the current formula. Furthermore, the probability of not removing
any interpretation ω′ ∈ C1 is also greater zero as f is monotonically
decreasing (ignoring the very first step). Therefore, the probability
p1 that C1 evolves to Ĉ (and is not modified thereafter) is greater
zero. Furthermore, the evolution of each candidate set Ci ∈ Cand is
probabilistically independent of all other evolutions and by consid-
ering more candidate sets, i. e., by setting the value m large enough,
more candidate sets will evolve to some card-minimal hitting set
of K and the average cardinality of the candidate sets approximates
Ihs(K) + 1.

70

